Skip to content

Generate and update models ops tests and reimplement the models ops test failure updation script #2642

Generate and update models ops tests and reimplement the models ops test failure updation script

Generate and update models ops tests and reimplement the models ops test failure updation script #2642

GitHub Actions / TT-Forge-FE Tests failed Feb 20, 2025 in 0s

5986 tests run, 5658 passed, 13 skipped, 315 failed.

Annotations

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add0-[((2, 1, 2048), torch.float32), ((1, 2048), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[1.3600, 1.2153, 0.3787,  ..., 0.6707, 1.7745, 0.3441]],

        [[1.1024, 0.8027, 0.4666,  ..., 0.8005, 1.5675, 0.1168]]]), compiled_model=tensor([[[1.3600e+00, 1.2153e+00, 3.7866e-01,  ..., 6.7065e-01,
          1.7745e+00, 3.4409e-01]],

        [[9.6467e-01, 4.3116e-01, 8.6057e-01,  ..., 4.2634e+33,
          8.6740e+33, 1.7471e+13]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add0'>, [((2, 1, 2048), torch.float32), ((1, 2048), torch.float32)], {'model_name': ['pt_stereo_facebook_musicgen_large_music_generation_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb617a39ea0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb617a1c340>
fw_out = tensor([[[1.3600, 1.2153, 0.3787,  ..., 0.6707, 1.7745, 0.3441]],

        [[1.1024, 0.8027, 0.4666,  ..., 0.8005, 1.5675, 0.1168]]])
co_out = tensor([[[1.3600e+00, 1.2153e+00, 3.7866e-01,  ..., 6.7065e-01,
          1.7745e+00, 3.4409e-01]],

        [[9.6467e-01, 4.3116e-01, 8.6057e-01,  ..., 4.2634e+33,
          8.6740e+33, 1.7471e+13]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[1.3600, 1.2153, 0.3787,  ..., 0.6707, 1.7745, 0.3441]],
E           
E                   [[1.1024, 0.8027, 0.4666,  ..., 0.8005, 1.5675, 0.1168]]]), compiled_model=tensor([[[1.3600e+00, 1.2153e+00, 3.7866e-01,  ..., 6.7065e-01,
E                     1.7745e+00, 3.4409e-01]],
E           
E                   [[9.6467e-01, 4.3116e-01, 8.6057e-01,  ..., 4.2634e+33,
E                     8.6740e+33, 1.7471e+13]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add0-[((2, 1, 1536), torch.float32), ((1, 1536), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[1.4631, 1.6477, 0.1510,  ..., 1.4470, 0.5821, 1.1420]],

        [[1.3005, 1.5406, 0.7837,  ..., 1.5979, 0.8316, 1.7089]]]), compiled_model=tensor([[[1.4631, 1.6477, 0.1510,  ..., 1.4470, 0.5821, 1.1420]],

        [[0.5513, 1.4046, 1.5054,  ..., 0.6761, 1.2908, 1.5603]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add0'>, [((2, 1, 1536), torch.float32), ((1, 1536), torch.float32)], {'model_name': ['pt_stereo_facebook_musicgen_medium_music_generation_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb6142879a0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb6171d6a70>
fw_out = tensor([[[1.4631, 1.6477, 0.1510,  ..., 1.4470, 0.5821, 1.1420]],

        [[1.3005, 1.5406, 0.7837,  ..., 1.5979, 0.8316, 1.7089]]])
co_out = tensor([[[1.4631, 1.6477, 0.1510,  ..., 1.4470, 0.5821, 1.1420]],

        [[0.5513, 1.4046, 1.5054,  ..., 0.6761, 1.2908, 1.5603]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[1.4631, 1.6477, 0.1510,  ..., 1.4470, 0.5821, 1.1420]],
E           
E                   [[1.3005, 1.5406, 0.7837,  ..., 1.5979, 0.8316, 1.7089]]]), compiled_model=tensor([[[1.4631, 1.6477, 0.1510,  ..., 1.4470, 0.5821, 1.1420]],
E           
E                   [[0.5513, 1.4046, 1.5054,  ..., 0.6761, 1.2908, 1.5603]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add0-[((2, 1, 1024), torch.float32), ((1, 1024), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[0.7350, 1.1238, 0.2649,  ..., 0.8409, 0.9051, 1.4962]],

        [[0.7037, 0.3834, 0.3881,  ..., 1.2408, 1.5215, 1.0661]]]), compiled_model=tensor([[[0.7350, 1.1238, 0.2649,  ..., 0.8409, 0.9051, 1.4962]],

        [[0.5946, 0.1729, 0.9468,  ..., 0.5875, 0.8263, 0.2909]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add0'>, [((2, 1, 1024), torch.float32), ((1, 1024), torch.float32)], {'model_name': ['pt_stereo_facebook_musicgen_small_music_generation_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb6142877f0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb617478190>
fw_out = tensor([[[0.7350, 1.1238, 0.2649,  ..., 0.8409, 0.9051, 1.4962]],

        [[0.7037, 0.3834, 0.3881,  ..., 1.2408, 1.5215, 1.0661]]])
co_out = tensor([[[0.7350, 1.1238, 0.2649,  ..., 0.8409, 0.9051, 1.4962]],

        [[0.5946, 0.1729, 0.9468,  ..., 0.5875, 0.8263, 0.2909]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[0.7350, 1.1238, 0.2649,  ..., 0.8409, 0.9051, 1.4962]],
E           
E                   [[0.7037, 0.3834, 0.3881,  ..., 1.2408, 1.5215, 1.0661]]]), compiled_model=tensor([[[0.7350, 1.1238, 0.2649,  ..., 0.8409, 0.9051, 1.4962]],
E           
E                   [[0.5946, 0.1729, 0.9468,  ..., 0.5875, 0.8263, 0.2909]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add46-[((1, 256), torch.int64)]]

TypeError: Dtype mismatch: framework_model.dtype=torch.int64, compiled_model.dtype=torch.int32
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add46'>, [((1, 256), torch.int64)], {'model_name': ['pt_opt_facebook_opt_1_3b_clm_hf', 'pt_opt_facebook_opt_125m_clm_hf', 'pt_opt_facebook_opt_350m_clm_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb614232b00>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

inputs = [Forge Tensor: tensor([[ 44, 239, 933, 760, 963, 379, 427, 503, 497, 683, 101, 866, 756, 399,
         878, 376,  56, ...537, 288, 420, 265, 830, 413, 965, 795, 833, 696, 552, 532,  35, 475,
         169, 374, 973, 703]]), DataFormat.Int32]
framework_model = Module Add46
compiled_model = <forge.compiled_graph_state.CompiledModel object at 0x7fb5d0daf3a0>
verify_cfg = VerifyConfig(enabled=True, verify_size=True, verify_dtype=True, verify_shape=True, verify_values=True, value_checker=<forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb617078d60>, dump_tensors=False, dump_tensors_path='')

    def verify(
        inputs: List[Union[torch.Tensor, tf.Tensor, tf.Variable]],
        framework_model: Union[torch.nn.Module, tf.Module, tf.keras.Model],
        compiled_model: CompiledModel,
        verify_cfg: VerifyConfig = VerifyConfig(),
    ):
        """
        Verify the compiled model against the framework model
        """
        if not verify_cfg.enabled:
            logger.warning("Verification is disabled")
            return
    
        # 0th step: input checks
    
        # Check if inputs are of the correct type
        if not inputs:
            raise ValueError("Input tensors must be provided")
        for input_tensor in inputs:
            if not isinstance(input_tensor, verify_cfg.supported_tensor_types):
                raise TypeError(
                    f"Input tensor must be of type {verify_cfg.supported_tensor_types}, but got {type(input_tensor)}"
                )
    
        if not isinstance(framework_model, verify_cfg.framework_model_types):
            raise TypeError(
                f"Framework model must be of type {verify_cfg.framework_model_types}, but got {type(framework_model)}"
            )
    
        if not isinstance(compiled_model, verify_cfg.compiled_model_types):
            raise TypeError(
                f"Compiled model must be of type {verify_cfg.compiled_model_types}, but got {type(compiled_model)}"
            )
    
        # 1st step: run forward pass for the networks
        fw_out = framework_model(*inputs)
        co_out = compiled_model(*inputs)
    
        # 2nd step: apply preprocessing (push tensors to cpu, perform any reshape if necessary,
        #  cast from tensorflow tensors to pytorch tensors if needed)
        fw_out = to_pt_tensors(fw_out)
    
        assert all(isinstance(co, torch.Tensor) for co in co_out), f"Compiled model output is not a list of torch.Tensor"
    
        co_out = [co.to("cpu") for co in co_out]
    
        # 3rd step: verifications of outputs
        # - size check
        # - dtype check
        # - shape check
        # - compare with golden
        if verify_cfg.verify_size:
            if len(fw_out) != len(co_out):
                raise ValueError(
                    f"Number of outputs from framework model and compiled model do not match: framework model has {len(fw_out)} outputs, compiled model has {len(co_out)} outputs"
                )
    
        for fw, co in zip(fw_out, co_out):
            if verify_cfg.verify_dtype:
                if fw.dtype != co.dtype:
>                   raise TypeError(f"Dtype mismatch: framework_model.dtype={fw.dtype}, compiled_model.dtype={co.dtype}")
E                   TypeError: Dtype mismatch: framework_model.dtype=torch.int64, compiled_model.dtype=torch.int32

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:326: TypeError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 120, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[1.1925]],

         [[1.4644]],

         [[0.7847]],

         [[0.8282]],

         [[1.0036]],

         [[1.3303]],

         [[1.1863]],

         [[1.5927]],

         [[1.1518]],

         [[1.3285]],

         [[1.0451]],

         [[1.0979]],

         [[0.7185]],

         [[0.8651]],

         [[0.9901]],

         [[1.2147]],

         [[1.3939]],

         [[1.4962]],

         [[0.8572]],

         [[0.9785]],

         [[1.3778]],

         [[1.6114]],

         [[1.0933]],

         [[1.5704]],

         [[1.1156]],

         [[1.2491]],

         [[1.6490]],

         [[0.7324]],

         [[0.8814]],

         [[1.0696]],

         [[1.0013]],

         [[1.6282]],

         [[0.8721]],

         [[0.9660]],

         [[0.8469]],

         [[0.7279]],

         [[0.9043]],

         [[1.6260]],

         [[1.4193]],

         [[1.4386]],

         [[1.2225]],

         [[0.9399]],

         [[1.2808]],

         [[0.7294]],

         [[0.8349]],

         [[0.9384]],

         [[1.5117]],

         [[1.4894]],

         [[0.9745]],

         [[1.1782]],

         [[1.5160]],

         [[1.6933]],

         [[1.3947]],

         [[1.2638]],

         [[1.5315]],

         [[0.9018]],

         [[1.2894]],

         [[0.8086]],

         [[0.8497]],

         [[0.9379]],

         [[1.4225]],

         [[1.3973]],

         [[0.9000]],

         [[1.3473]],

         [[1.4707]],

         [[1.1331]],

         [[1.2153]],

         [[1.3121]],

         [[1.5064]],

         [[1.6763]],

         [[0.8109]],

         [[1.0130]],

         [[1.3927]],

         [[1.6105]],

         [[1.6313]],

         [[1.6374]],

         [[1.2957]],

         [[0.7614]],

         [[1.2422]],

         [[0.8834]],

         [[0.7302]],

         [[1.6405]],

         [[1.5764]],

         [[0.6975]],

         [[1.2898]],

         [[1.1120]],

         [[1.1139]],

         [[0.9673]],

         [[1.3885]],

         [[0.9001]],

         [[1.3795]],

         [[1.4491]],

         [[1.5541]],

         [[1.3832]],

         [[0.7013]],

         [[0.8719]],

         [[1.4459]],

         [[1.3009]],

         [[0.8062]],

         [[0.9083]],

         [[1.6666]],

         [[1.5331]],

         [[0.9782]],

         [[1.0704]],

         [[0.7199]],

         [[1.1872]],

         [[0.8197]],

         [[0.8105]],

         [[1.1687]],

         [[1.2713]],

         [[0.9914]],

         [[1.4929]],

         [[0.8919]],

         [[1.6499]],

         [[1.5389]],

         [[0.7746]],

         [[1.0718]],

         [[1.2188]],

         [[1.2692]],

         [[1.3148]]]]), compiled_model=tensor([[[[1.1925]],

         [[0.8148]],

         [[0.6633]],

         [[0.2287]],

         [[1.3056]],

         [[0.9863]],

         [[1.1027]],

         [[1.2537]],

         [[0.7629]],

         [[1.1383]],

         [[1.3192]],

         [[0.9223]],

         [[0.1159]],

         [[0.7854]],

         [[0.8128]],

         [[0.6727]],

         [[0.8069]],

         [[1.3291]],

         [[0.8705]],

         [[0.8340]],

         [[0.6928]],

         [[1.1125]],

         [[1.0079]],

         [[1.1160]],

         [[0.6278]],

         [[1.3501]],

         [[1.2956]],

         [[0.9238]],

         [[0.8133]],

         [[0.8396]],

         [[0.5405]],

         [[1.1268]],

         [[0.6458]],

         [[1.0180]],

         [[0.4824]],

         [[0.0414]],

         [[0.7002]],

         [[1.5226]],

         [[1.6835]],

         [[0.8462]],

         [[1.1809]],

         [[1.1559]],

         [[0.9756]],

         [[0.5071]],

         [[0.9486]],

         [[0.4561]],

         [[1.2770]],

         [[0.8888]],

         [[1.7509]],

         [[1.6343]],

         [[2.6938]],

         [[1.9780]],

         [[2.1135]],

         [[1.4382]],

         [[2.2766]],

         [[1.3394]],

         [[1.5243]],

         [[0.4717]],

         [[1.1535]],

         [[0.5437]],

         [[2.3805]],

         [[2.1952]],

         [[1.8718]],

         [[1.7292]],

         [[2.4024]],

         [[1.7025]],

         [[1.2691]],

         [[1.2936]],

         [[1.7511]],

         [[1.7696]],

         [[0.8046]],

         [[1.3133]],

         [[1.4113]],

         [[1.5271]],

         [[2.2408]],

         [[2.2586]],

         [[1.4315]],

         [[1.0232]],

         [[0.8507]],

         [[0.5651]],

         [[1.6746]],

         [[2.3368]],

         [[2.5706]],

         [[1.0940]],

         [[1.7166]],

         [[1.2639]],

         [[1.2058]],

         [[1.0001]],

         [[2.1825]],

         [[1.5896]],

         [[1.9450]],

         [[2.1591]],

         [[2.6421]],

         [[1.7768]],

         [[1.0637]],

         [[1.9813]],

         [[2.1842]],

         [[1.6359]],

         [[0.6158]],

         [[1.3820]],

         [[1.9801]],

         [[1.4038]],

         [[0.7981]],

         [[1.5333]],

         [[0.7468]],

         [[1.2454]],

         [[1.1196]],

         [[1.0777]],

         [[2.2947]],

         [[1.4906]],

         [[0.5606]],

         [[1.1612]],

         [[1.3862]],

         [[1.9556]],

         [[1.8524]],

         [[1.3284]],

         [[0.8848]],

         [[1.4884]],

         [[1.7438]],

         [[1.1415]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 120, 1, 1), torch.float32)], {'model_name': ['pt_ghostnet_ghostnet_100..._cls_timm', 'pt_mobilnetv3_mobilenetv3_large_100_img_cls_timm', 'pt_mobilenetv3_mobilenet_v3_large_img_cls_torchhub']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5e7eda5f0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5d0dae890>
fw_out = tensor([[[[1.1925]],

         [[1.4644]],

         [[0.7847]],

         [[0.8282]],

         [[1.0036]],

        ...5389]],

         [[0.7746]],

         [[1.0718]],

         [[1.2188]],

         [[1.2692]],

         [[1.3148]]]])
co_out = tensor([[[[1.1925]],

         [[0.8148]],

         [[0.6633]],

         [[0.2287]],

         [[1.3056]],

        ...8524]],

         [[1.3284]],

         [[0.8848]],

         [[1.4884]],

         [[1.7438]],

         [[1.1415]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[1.1925]],
E           
E                    [[1.4644]],
E           
E                    [[0.7847]],
E           
E                    [[0.8282]],
E           
E                    [[1.0036]],
E           
E                    [[1.3303]],
E           
E                    [[1.1863]],
E           
E                    [[1.5927]],
E           
E                    [[1.1518]],
E           
E                    [[1.3285]],
E           
E                    [[1.0451]],
E           
E                    [[1.0979]],
E           
E                    [[0.7185]],
E           
E                    [[0.8651]],
E           
E                    [[0.9901]],
E           
E                    [[1.2147]],
E           
E                    [[1.3939]],
E           
E                    [[1.4962]],
E           
E                    [[0.8572]],
E           
E                    [[0.9785]],
E           
E                    [[1.3778]],
E           
E                    [[1.6114]],
E           
E                    [[1.0933]],
E           
E                    [[1.5704]],
E           
E                    [[1.1156]],
E           
E                    [[1.2491]],
E           
E                    [[1.6490]],
E           
E                    [[0.7324]],
E           
E                    [[0.8814]],
E           
E                    [[1.0696]],
E           
E                    [[1.0013]],
E           
E                    [[1.6282]],
E           
E                    [[0.8721]],
E           
E                    [[0.9660]],
E           
E                    [[0.8469]],
E           
E                    [[0.7279]],
E           
E                    [[0.9043]],
E           
E                    [[1.6260]],
E           
E                    [[1.4193]],
E           
E                    [[1.4386]],
E           
E                    [[1.2225]],
E           
E                    [[0.9399]],
E           
E                    [[1.2808]],
E           
E                    [[0.7294]],
E           
E                    [[0.8349]],
E           
E                    [[0.9384]],
E           
E                    [[1.5117]],
E           
E                    [[1.4894]],
E           
E                    [[0.9745]],
E           
E                    [[1.1782]],
E           
E                    [[1.5160]],
E           
E                    [[1.6933]],
E           
E                    [[1.3947]],
E           
E                    [[1.2638]],
E           
E                    [[1.5315]],
E           
E                    [[0.9018]],
E           
E                    [[1.2894]],
E           
E                    [[0.8086]],
E           
E                    [[0.8497]],
E           
E                    [[0.9379]],
E           
E                    [[1.4225]],
E           
E                    [[1.3973]],
E           
E                    [[0.9000]],
E           
E                    [[1.3473]],
E           
E                    [[1.4707]],
E           
E                    [[1.1331]],
E           
E                    [[1.2153]],
E           
E                    [[1.3121]],
E           
E                    [[1.5064]],
E           
E                    [[1.6763]],
E           
E                    [[0.8109]],
E           
E                    [[1.0130]],
E           
E                    [[1.3927]],
E           
E                    [[1.6105]],
E           
E                    [[1.6313]],
E           
E                    [[1.6374]],
E           
E                    [[1.2957]],
E           
E                    [[0.7614]],
E           
E                    [[1.2422]],
E           
E                    [[0.8834]],
E           
E                    [[0.7302]],
E           
E                    [[1.6405]],
E           
E                    [[1.5764]],
E           
E                    [[0.6975]],
E           
E                    [[1.2898]],
E           
E                    [[1.1120]],
E           
E                    [[1.1139]],
E           
E                    [[0.9673]],
E           
E                    [[1.3885]],
E           
E                    [[0.9001]],
E           
E                    [[1.3795]],
E           
E                    [[1.4491]],
E           
E                    [[1.5541]],
E           
E                    [[1.3832]],
E           
E                    [[0.7013]],
E           
E                    [[0.8719]],
E           
E                    [[1.4459]],
E           
E                    [[1.3009]],
E           
E                    [[0.8062]],
E           
E                    [[0.9083]],
E           
E                    [[1.6666]],
E           
E                    [[1.5331]],
E           
E                    [[0.9782]],
E           
E                    [[1.0704]],
E           
E                    [[0.7199]],
E           
E                    [[1.1872]],
E           
E                    [[0.8197]],
E           
E                    [[0.8105]],
E           
E                    [[1.1687]],
E           
E                    [[1.2713]],
E           
E                    [[0.9914]],
E           
E                    [[1.4929]],
E           
E                    [[0.8919]],
E           
E                    [[1.6499]],
E           
E                    [[1.5389]],
E           
E                    [[0.7746]],
E           
E                    [[1.0718]],
E           
E                    [[1.2188]],
E           
E                    [[1.2692]],
E           
E                    [[1.3148]]]]), compiled_model=tensor([[[[1.1925]],
E           
E                    [[0.8148]],
E           
E                    [[0.6633]],
E           
E                    [[0.2287]],
E           
E                    [[1.3056]],
E           
E                    [[0.9863]],
E           
E                    [[1.1027]],
E           
E                    [[1.2537]],
E           
E                    [[0.7629]],
E           
E                    [[1.1383]],
E           
E                    [[1.3192]],
E           
E                    [[0.9223]],
E           
E                    [[0.1159]],
E           
E                    [[0.7854]],
E           
E                    [[0.8128]],
E           
E                    [[0.6727]],
E           
E                    [[0.8069]],
E           
E                    [[1.3291]],
E           
E                    [[0.8705]],
E           
E                    [[0.8340]],
E           
E                    [[0.6928]],
E           
E                    [[1.1125]],
E           
E                    [[1.0079]],
E           
E                    [[1.1160]],
E           
E                    [[0.6278]],
E           
E                    [[1.3501]],
E           
E                    [[1.2956]],
E           
E                    [[0.9238]],
E           
E                    [[0.8133]],
E           
E                    [[0.8396]],
E           
E                    [[0.5405]],
E           
E                    [[1.1268]],
E           
E                    [[0.6458]],
E           
E                    [[1.0180]],
E           
E                    [[0.4824]],
E           
E                    [[0.0414]],
E           
E                    [[0.7002]],
E           
E                    [[1.5226]],
E           
E                    [[1.6835]],
E           
E                    [[0.8462]],
E           
E                    [[1.1809]],
E           
E                    [[1.1559]],
E           
E                    [[0.9756]],
E           
E                    [[0.5071]],
E           
E                    [[0.9486]],
E           
E                    [[0.4561]],
E           
E                    [[1.2770]],
E           
E                    [[0.8888]],
E           
E                    [[1.7509]],
E           
E                    [[1.6343]],
E           
E                    [[2.6938]],
E           
E                    [[1.9780]],
E           
E                    [[2.1135]],
E           
E                    [[1.4382]],
E           
E                    [[2.2766]],
E           
E                    [[1.3394]],
E           
E                    [[1.5243]],
E           
E                    [[0.4717]],
E           
E                    [[1.1535]],
E           
E                    [[0.5437]],
E           
E                    [[2.3805]],
E           
E                    [[2.1952]],
E           
E                    [[1.8718]],
E           
E                    [[1.7292]],
E           
E                    [[2.4024]],
E           
E                    [[1.7025]],
E           
E                    [[1.2691]],
E           
E                    [[1.2936]],
E           
E                    [[1.7511]],
E           
E                    [[1.7696]],
E           
E                    [[0.8046]],
E           
E                    [[1.3133]],
E           
E                    [[1.4113]],
E           
E                    [[1.5271]],
E           
E                    [[2.2408]],
E           
E                    [[2.2586]],
E           
E                    [[1.4315]],
E           
E                    [[1.0232]],
E           
E                    [[0.8507]],
E           
E                    [[0.5651]],
E           
E                    [[1.6746]],
E           
E                    [[2.3368]],
E           
E                    [[2.5706]],
E           
E                    [[1.0940]],
E           
E                    [[1.7166]],
E           
E                    [[1.2639]],
E           
E                    [[1.2058]],
E           
E                    [[1.0001]],
E           
E                    [[2.1825]],
E           
E                    [[1.5896]],
E           
E                    [[1.9450]],
E           
E                    [[2.1591]],
E           
E                    [[2.6421]],
E           
E                    [[1.7768]],
E           
E                    [[1.0637]],
E           
E                    [[1.9813]],
E           
E                    [[2.1842]],
E           
E                    [[1.6359]],
E           
E                    [[0.6158]],
E           
E                    [[1.3820]],
E           
E                    [[1.9801]],
E           
E                    [[1.4038]],
E           
E                    [[0.7981]],
E           
E                    [[1.5333]],
E           
E                    [[0.7468]],
E           
E                    [[1.2454]],
E           
E                    [[1.1196]],
E           
E                    [[1.0777]],
E           
E                    [[2.2947]],
E           
E                    [[1.4906]],
E           
E                    [[0.5606]],
E           
E                    [[1.1612]],
E           
E                    [[1.3862]],
E           
E                    [[1.9556]],
E           
E                    [[1.8524]],
E           
E                    [[1.3284]],
E           
E                    [[0.8848]],
E           
E                    [[1.4884]],
E           
E                    [[1.7438]],
E           
E                    [[1.1415]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 16, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[1.1939]],

         [[1.4659]],

         [[0.7861]],

         [[0.8297]],

         [[1.0051]],

         [[1.3317]],

         [[1.1878]],

         [[1.5941]],

         [[1.1533]],

         [[1.3300]],

         [[1.0466]],

         [[1.0994]],

         [[0.7200]],

         [[0.8665]],

         [[0.9916]],

         [[1.2162]]]]), compiled_model=tensor([[[[1.1939]],

         [[1.3211]],

         [[1.0412]],

         [[0.1682]],

         [[0.4927]],

         [[1.0075]],

         [[0.7952]],

         [[1.8284]],

         [[0.6315]],

         [[0.9021]],

         [[0.4996]],

         [[0.4334]],

         [[0.2305]],

         [[1.0987]],

         [[1.0170]],

         [[1.2609]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 16, 1, 1), torch.float32)], {'model_name': ['pt_mobilenetv3_mobilenet_v3_small_img_cls_torchhub', 'pt_mobilnetv3_mobilenetv3_small_100_img_cls_timm']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0b78430>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5d0daf520>
fw_out = tensor([[[[1.1939]],

         [[1.4659]],

         [[0.7861]],

         [[0.8297]],

         [[1.0051]],

        ...0466]],

         [[1.0994]],

         [[0.7200]],

         [[0.8665]],

         [[0.9916]],

         [[1.2162]]]])
co_out = tensor([[[[1.1939]],

         [[1.3211]],

         [[1.0412]],

         [[0.1682]],

         [[0.4927]],

        ...4996]],

         [[0.4334]],

         [[0.2305]],

         [[1.0987]],

         [[1.0170]],

         [[1.2609]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[1.1939]],
E           
E                    [[1.4659]],
E           
E                    [[0.7861]],
E           
E                    [[0.8297]],
E           
E                    [[1.0051]],
E           
E                    [[1.3317]],
E           
E                    [[1.1878]],
E           
E                    [[1.5941]],
E           
E                    [[1.1533]],
E           
E                    [[1.3300]],
E           
E                    [[1.0466]],
E           
E                    [[1.0994]],
E           
E                    [[0.7200]],
E           
E                    [[0.8665]],
E           
E                    [[0.9916]],
E           
E                    [[1.2162]]]]), compiled_model=tensor([[[[1.1939]],
E           
E                    [[1.3211]],
E           
E                    [[1.0412]],
E           
E                    [[0.1682]],
E           
E                    [[0.4927]],
E           
E                    [[1.0075]],
E           
E                    [[0.7952]],
E           
E                    [[1.8284]],
E           
E                    [[0.6315]],
E           
E                    [[0.9021]],
E           
E                    [[0.4996]],
E           
E                    [[0.4334]],
E           
E                    [[0.2305]],
E           
E                    [[1.0987]],
E           
E                    [[1.0170]],
E           
E                    [[1.2609]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 240, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[1.1614]],

         [[1.4333]],

         [[0.7536]],

         [[0.7971]],

         [[0.9725]],

         [[1.2992]],

         [[1.1552]],

         [[1.5615]],

         [[1.1207]],

         [[1.2974]],

         [[1.0140]],

         [[1.0668]],

         [[0.6874]],

         [[0.8340]],

         [[0.9590]],

         [[1.1836]],

         [[1.3628]],

         [[1.4651]],

         [[0.8261]],

         [[0.9474]],

         [[1.3467]],

         [[1.5803]],

         [[1.0622]],

         [[1.5393]],

         [[1.0845]],

         [[1.2180]],

         [[1.6178]],

         [[0.7013]],

         [[0.8503]],

         [[1.0385]],

         [[0.9702]],

         [[1.5971]],

         [[0.8410]],

         [[0.9349]],

         [[0.8158]],

         [[0.6968]],

         [[0.8732]],

         [[1.5949]],

         [[1.3882]],

         [[1.4074]],

         [[1.1914]],

         [[0.9088]],

         [[1.2497]],

         [[0.6982]],

         [[0.8038]],

         [[0.9073]],

         [[1.4806]],

         [[1.4583]],

         [[0.9433]],

         [[1.1471]],

         [[1.4849]],

         [[1.6622]],

         [[1.3635]],

         [[1.2326]],

         [[1.5003]],

         [[0.8707]],

         [[1.2583]],

         [[0.7774]],

         [[0.8186]],

         [[0.9068]],

         [[1.3913]],

         [[1.3662]],

         [[0.8689]],

         [[1.3161]],

         [[1.4396]],

         [[1.1020]],

         [[1.1842]],

         [[1.2809]],

         [[1.4753]],

         [[1.6452]],

         [[0.7798]],

         [[0.9819]],

         [[1.3616]],

         [[1.5794]],

         [[1.6002]],

         [[1.6063]],

         [[1.2646]],

         [[0.7303]],

         [[1.2111]],

         [[0.8523]],

         [[0.6991]],

         [[1.6093]],

         [[1.5453]],

         [[0.6663]],

         [[1.2587]],

         [[1.0809]],

         [[1.0828]],

         [[0.9362]],

         [[1.3574]],

         [[0.8689]],

         [[1.3484]],

         [[1.4180]],

         [[1.5230]],

         [[1.3521]],

         [[0.6702]],

         [[0.8407]],

         [[1.4148]],

         [[1.2697]],

         [[0.7751]],

         [[0.8772]],

         [[1.6355]],

         [[1.5020]],

         [[0.9471]],

         [[1.0393]],

         [[0.6888]],

         [[1.1561]],

         [[0.7886]],

         [[0.7794]],

         [[1.1375]],

         [[1.2402]],

         [[0.9603]],

         [[1.4618]],

         [[0.8608]],

         [[1.6188]],

         [[1.5077]],

         [[0.7435]],

         [[1.0407]],

         [[1.1877]],

         [[1.2380]],

         [[1.2837]],

         [[1.3613]],

         [[1.1950]],

         [[0.9211]],

         [[1.4017]],

         [[0.6855]],

         [[0.8687]],

         [[1.0399]],

         [[0.9215]],

         [[0.9902]],

         [[0.7553]],

         [[1.0587]],

         [[1.2720]],

         [[0.8394]],

         [[1.1394]],

         [[1.5230]],

         [[1.1137]],

         [[1.1790]],

         [[1.1220]],

         [[1.2663]],

         [[1.4830]],

         [[1.6387]],

         [[1.4826]],

         [[1.6398]],

         [[1.1289]],

         [[0.7159]],

         [[0.9281]],

         [[1.5055]],

         [[1.1619]],

         [[0.9166]],

         [[0.7819]],

         [[0.6972]],

         [[0.7431]],

         [[1.0637]],

         [[1.4393]],

         [[1.4354]],

         [[0.6829]],

         [[1.4770]],

         [[0.7738]],

         [[1.0594]],

         [[0.9624]],

         [[1.0688]],

         [[1.0669]],

         [[0.7164]],

         [[0.7334]],

         [[1.0869]],

         [[1.1716]],

         [[0.9380]],

         [[1.3534]],

         [[0.7151]],

         [[1.1314]],

         [[1.6048]],

         [[0.9612]],

         [[1.6166]],

         [[1.3462]],

         [[0.7139]],

         [[1.4814]],

         [[1.1074]],

         [[0.9419]],

         [[1.5649]],

         [[0.7610]],

         [[1.2187]],

         [[1.0604]],

         [[1.5222]],

         [[1.3047]],

         [[1.4053]],

         [[1.3417]],

         [[1.0449]],

         [[1.0599]],

         [[0.7531]],

         [[1.4360]],

         [[1.5621]],

         [[1.5072]],

         [[0.8124]],

         [[1.1874]],

         [[0.8126]],

         [[0.8899]],

         [[0.8737]],

         [[1.3360]],

         [[0.8671]],

         [[1.1542]],

         [[1.1861]],

         [[1.4874]],

         [[0.7871]],

         [[0.8218]],

         [[0.8748]],

         [[1.5151]],

         [[0.9854]],

         [[1.5868]],

         [[1.3459]],

         [[1.2284]],

         [[1.1614]],

         [[1.0663]],

         [[1.2278]],

         [[1.0509]],

         [[1.1616]],

         [[1.2289]],

         [[0.7740]],

         [[0.9030]],

         [[1.5688]],

         [[0.7593]],

         [[1.1292]],

         [[1.6597]],

         [[1.3457]],

         [[1.1793]],

         [[0.7318]],

         [[1.4128]],

         [[0.8090]],

         [[1.0232]],

         [[0.9973]],

         [[1.0911]],

         [[1.1706]],

         [[1.5775]],

         [[1.2275]],

         [[1.6129]],

         [[1.4710]],

         [[0.8490]],

         [[1.3893]],

         [[0.8116]],

         [[0.9532]],

         [[1.3122]]]]), compiled_model=tensor([[[[1.1614]],

         [[1.5250]],

         [[1.7245]],

         [[0.9210]],

         [[1.3506]],

         [[1.6945]],

         [[0.8003]],

         [[2.0041]],

         [[1.3812]],

         [[1.5068]],

         [[0.6095]],

         [[0.6455]],

         [[1.2008]],

         [[1.9356]],

         [[1.2990]],

         [[1.6350]],

         [[1.2477]],

         [[1.5347]],

         [[0.8691]],

         [[0.4297]],

         [[1.2928]],

         [[1.7325]],

         [[1.5078]],

         [[2.4640]],

         [[0.8934]],

         [[1.9886]],

         [[2.6152]],

         [[1.1116]],

         [[1.2592]],

         [[1.4635]],

         [[1.7133]],

         [[1.7562]],

         [[1.4653]],

         [[0.9121]],

         [[0.5602]],

         [[1.0100]],

         [[0.9547]],

         [[1.8345]],

         [[1.3018]],

         [[1.6498]],

         [[1.5868]],

         [[1.5327]],

         [[1.3922]],

         [[0.7407]],

         [[0.9190]],

         [[0.9815]],

         [[1.7915]],

         [[1.4641]],

         [[0.9672]],

         [[1.7066]],

         [[2.0952]],

         [[1.9136]],

         [[1.5808]],

         [[1.3044]],

         [[2.0042]],

         [[0.9785]],

         [[1.1542]],

         [[0.9825]],

         [[0.8566]],

         [[0.8018]],

         [[1.3843]],

         [[1.1908]],

         [[0.5914]],

         [[0.8428]],

         [[1.6203]],

         [[0.5647]],

         [[1.2239]],

         [[0.9477]],

         [[1.0690]],

         [[1.5699]],

         [[0.3550]],

         [[0.9320]],

         [[1.2947]],

         [[1.0430]],

         [[1.5184]],

         [[1.6541]],

         [[1.2974]],

         [[0.5023]],

         [[0.6361]],

         [[0.6101]],

         [[0.7077]],

         [[1.2618]],

         [[1.5700]],

         [[0.8342]],

         [[0.8325]],

         [[0.9207]],

         [[1.1245]],

         [[0.8103]],

         [[1.2340]],

         [[0.7663]],

         [[0.7902]],

         [[1.2921]],

         [[1.7042]],

         [[1.6375]],

         [[0.7990]],

         [[0.7427]],

         [[1.4832]],

         [[0.8614]],

         [[0.1956]],

         [[0.2821]],

         [[1.9692]],

         [[1.6543]],

         [[0.4364]],

         [[1.0698]],

         [[0.9013]],

         [[1.4908]],

         [[1.0607]],

         [[1.0017]],

         [[0.8578]],

         [[0.8996]],

         [[1.2058]],

         [[1.5769]],

         [[0.3948]],

         [[1.9032]],

         [[1.5842]],

         [[0.8509]],

         [[0.5622]],

         [[1.1660]],

         [[0.8977]],

         [[1.5093]],

         [[1.1062]],

         [[1.2246]],

         [[0.8448]],

         [[1.4493]],

         [[0.3505]],

         [[0.9474]],

         [[0.5256]],

         [[0.8694]],

         [[0.4868]],

         [[0.0969]],

         [[0.4921]],

         [[1.5016]],

         [[0.9448]],

         [[1.4434]],

         [[1.7585]],

         [[0.5021]],

         [[0.6727]],

         [[0.8761]],

         [[0.7765]],

         [[1.6651]],

         [[1.0956]],

         [[1.0736]],

         [[0.9917]],

         [[0.6800]],

         [[0.9621]],

         [[1.1723]],

         [[1.6984]],

         [[1.3828]],

         [[1.1961]],

         [[0.4888]],

         [[0.7521]],

         [[1.0235]],

         [[1.0640]],

         [[1.7740]],

         [[1.5297]],

         [[0.8286]],

         [[1.1369]],

         [[0.8487]],

         [[0.9517]],

         [[0.6779]],

         [[0.6218]],

         [[0.6213]],

         [[0.1666]],

         [[0.9039]],

         [[1.2772]],

         [[0.9496]],

         [[0.4835]],

         [[1.5748]],

         [[0.8697]],

         [[1.0034]],

         [[1.2036]],

         [[1.2556]],

         [[1.6560]],

         [[0.8015]],

         [[1.0273]],

         [[1.6960]],

         [[0.7601]],

         [[1.0579]],

         [[1.1157]],

         [[0.5176]],

         [[1.4782]],

         [[0.9160]],

         [[1.0034]],

         [[0.9725]],

         [[1.1045]],

         [[1.0801]],

         [[0.9276]],

         [[1.3573]],

         [[0.6147]],

         [[0.9622]],

         [[1.4226]],

         [[1.5819]],

         [[0.8953]],

         [[0.5653]],

         [[0.5581]],

         [[0.3532]],

         [[0.4953]],

         [[1.3510]],

         [[0.3470]],

         [[1.1750]],

         [[1.4454]],

         [[1.3551]],

         [[0.2888]],

         [[0.4776]],

         [[0.8189]],

         [[0.9688]],

         [[1.0687]],

         [[0.9678]],

         [[0.7002]],

         [[0.5775]],

         [[0.8948]],

         [[1.2374]],

         [[0.5895]],

         [[1.3014]],

         [[0.7965]],

         [[1.2102]],

         [[0.6317]],

         [[0.2871]],

         [[1.8184]],

         [[0.8634]],

         [[1.4611]],

         [[1.7472]],

         [[0.8506]],

         [[1.4314]],

         [[0.5936]],

         [[1.4848]],

         [[0.2429]],

         [[0.7143]],

         [[0.3413]],

         [[0.7312]],

         [[1.1133]],

         [[1.0198]],

         [[1.2218]],

         [[1.7162]],

         [[1.3755]],

         [[0.3494]],

         [[0.8366]],

         [[0.4923]],

         [[1.0076]],

         [[1.6403]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 240, 1, 1), torch.float32)], {'model_name': ['pt_mobilenetv3_mobilenet_v3_small_img_cls_torchhub', 'pt_mobilnetv3_mobilenetv3_small_100_img_cls_timm']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5e7edb910>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5c8ef97b0>
fw_out = tensor([[[[1.1614]],

         [[1.4333]],

         [[0.7536]],

         [[0.7971]],

         [[0.9725]],

        ...4710]],

         [[0.8490]],

         [[1.3893]],

         [[0.8116]],

         [[0.9532]],

         [[1.3122]]]])
co_out = tensor([[[[1.1614]],

         [[1.5250]],

         [[1.7245]],

         [[0.9210]],

         [[1.3506]],

        ...3755]],

         [[0.3494]],

         [[0.8366]],

         [[0.4923]],

         [[1.0076]],

         [[1.6403]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[1.1614]],
E           
E                    [[1.4333]],
E           
E                    [[0.7536]],
E           
E                    [[0.7971]],
E           
E                    [[0.9725]],
E           
E                    [[1.2992]],
E           
E                    [[1.1552]],
E           
E                    [[1.5615]],
E           
E                    [[1.1207]],
E           
E                    [[1.2974]],
E           
E                    [[1.0140]],
E           
E                    [[1.0668]],
E           
E                    [[0.6874]],
E           
E                    [[0.8340]],
E           
E                    [[0.9590]],
E           
E                    [[1.1836]],
E           
E                    [[1.3628]],
E           
E                    [[1.4651]],
E           
E                    [[0.8261]],
E           
E                    [[0.9474]],
E           
E                    [[1.3467]],
E           
E                    [[1.5803]],
E           
E                    [[1.0622]],
E           
E                    [[1.5393]],
E           
E                    [[1.0845]],
E           
E                    [[1.2180]],
E           
E                    [[1.6178]],
E           
E                    [[0.7013]],
E           
E                    [[0.8503]],
E           
E                    [[1.0385]],
E           
E                    [[0.9702]],
E           
E                    [[1.5971]],
E           
E                    [[0.8410]],
E           
E                    [[0.9349]],
E           
E                    [[0.8158]],
E           
E                    [[0.6968]],
E           
E                    [[0.8732]],
E           
E                    [[1.5949]],
E           
E                    [[1.3882]],
E           
E                    [[1.4074]],
E           
E                    [[1.1914]],
E           
E                    [[0.9088]],
E           
E                    [[1.2497]],
E           
E                    [[0.6982]],
E           
E                    [[0.8038]],
E           
E                    [[0.9073]],
E           
E                    [[1.4806]],
E           
E                    [[1.4583]],
E           
E                    [[0.9433]],
E           
E                    [[1.1471]],
E           
E                    [[1.4849]],
E           
E                    [[1.6622]],
E           
E                    [[1.3635]],
E           
E                    [[1.2326]],
E           
E                    [[1.5003]],
E           
E                    [[0.8707]],
E           
E                    [[1.2583]],
E           
E                    [[0.7774]],
E           
E                    [[0.8186]],
E           
E                    [[0.9068]],
E           
E                    [[1.3913]],
E           
E                    [[1.3662]],
E           
E                    [[0.8689]],
E           
E                    [[1.3161]],
E           
E                    [[1.4396]],
E           
E                    [[1.1020]],
E           
E                    [[1.1842]],
E           
E                    [[1.2809]],
E           
E                    [[1.4753]],
E           
E                    [[1.6452]],
E           
E                    [[0.7798]],
E           
E                    [[0.9819]],
E           
E                    [[1.3616]],
E           
E                    [[1.5794]],
E           
E                    [[1.6002]],
E           
E                    [[1.6063]],
E           
E                    [[1.2646]],
E           
E                    [[0.7303]],
E           
E                    [[1.2111]],
E           
E                    [[0.8523]],
E           
E                    [[0.6991]],
E           
E                    [[1.6093]],
E           
E                    [[1.5453]],
E           
E                    [[0.6663]],
E           
E                    [[1.2587]],
E           
E                    [[1.0809]],
E           
E                    [[1.0828]],
E           
E                    [[0.9362]],
E           
E                    [[1.3574]],
E           
E                    [[0.8689]],
E           
E                    [[1.3484]],
E           
E                    [[1.4180]],
E           
E                    [[1.5230]],
E           
E                    [[1.3521]],
E           
E                    [[0.6702]],
E           
E                    [[0.8407]],
E           
E                    [[1.4148]],
E           
E                    [[1.2697]],
E           
E                    [[0.7751]],
E           
E                    [[0.8772]],
E           
E                    [[1.6355]],
E           
E                    [[1.5020]],
E           
E                    [[0.9471]],
E           
E                    [[1.0393]],
E           
E                    [[0.6888]],
E           
E                    [[1.1561]],
E           
E                    [[0.7886]],
E           
E                    [[0.7794]],
E           
E                    [[1.1375]],
E           
E                    [[1.2402]],
E           
E                    [[0.9603]],
E           
E                    [[1.4618]],
E           
E                    [[0.8608]],
E           
E                    [[1.6188]],
E           
E                    [[1.5077]],
E           
E                    [[0.7435]],
E           
E                    [[1.0407]],
E           
E                    [[1.1877]],
E           
E                    [[1.2380]],
E           
E                    [[1.2837]],
E           
E                    [[1.3613]],
E           
E                    [[1.1950]],
E           
E                    [[0.9211]],
E           
E                    [[1.4017]],
E           
E                    [[0.6855]],
E           
E                    [[0.8687]],
E           
E                    [[1.0399]],
E           
E                    [[0.9215]],
E           
E                    [[0.9902]],
E           
E                    [[0.7553]],
E           
E                    [[1.0587]],
E           
E                    [[1.2720]],
E           
E                    [[0.8394]],
E           
E                    [[1.1394]],
E           
E                    [[1.5230]],
E           
E                    [[1.1137]],
E           
E                    [[1.1790]],
E           
E                    [[1.1220]],
E           
E                    [[1.2663]],
E           
E                    [[1.4830]],
E           
E                    [[1.6387]],
E           
E                    [[1.4826]],
E           
E                    [[1.6398]],
E           
E                    [[1.1289]],
E           
E                    [[0.7159]],
E           
E                    [[0.9281]],
E           
E                    [[1.5055]],
E           
E                    [[1.1619]],
E           
E                    [[0.9166]],
E           
E                    [[0.7819]],
E           
E                    [[0.6972]],
E           
E                    [[0.7431]],
E           
E                    [[1.0637]],
E           
E                    [[1.4393]],
E           
E                    [[1.4354]],
E           
E                    [[0.6829]],
E           
E                    [[1.4770]],
E           
E                    [[0.7738]],
E           
E                    [[1.0594]],
E           
E                    [[0.9624]],
E           
E                    [[1.0688]],
E           
E                    [[1.0669]],
E           
E                    [[0.7164]],
E           
E                    [[0.7334]],
E           
E                    [[1.0869]],
E           
E                    [[1.1716]],
E           
E                    [[0.9380]],
E           
E                    [[1.3534]],
E           
E                    [[0.7151]],
E           
E                    [[1.1314]],
E           
E                    [[1.6048]],
E           
E                    [[0.9612]],
E           
E                    [[1.6166]],
E           
E                    [[1.3462]],
E           
E                    [[0.7139]],
E           
E                    [[1.4814]],
E           
E                    [[1.1074]],
E           
E                    [[0.9419]],
E           
E                    [[1.5649]],
E           
E                    [[0.7610]],
E           
E                    [[1.2187]],
E           
E                    [[1.0604]],
E           
E                    [[1.5222]],
E           
E                    [[1.3047]],
E           
E                    [[1.4053]],
E           
E                    [[1.3417]],
E           
E                    [[1.0449]],
E           
E                    [[1.0599]],
E           
E                    [[0.7531]],
E           
E                    [[1.4360]],
E           
E                    [[1.5621]],
E           
E                    [[1.5072]],
E           
E                    [[0.8124]],
E           
E                    [[1.1874]],
E           
E                    [[0.8126]],
E           
E                    [[0.8899]],
E           
E                    [[0.8737]],
E           
E                    [[1.3360]],
E           
E                    [[0.8671]],
E           
E                    [[1.1542]],
E           
E                    [[1.1861]],
E           
E                    [[1.4874]],
E           
E                    [[0.7871]],
E           
E                    [[0.8218]],
E           
E                    [[0.8748]],
E           
E                    [[1.5151]],
E           
E                    [[0.9854]],
E           
E                    [[1.5868]],
E           
E                    [[1.3459]],
E           
E                    [[1.2284]],
E           
E                    [[1.1614]],
E           
E                    [[1.0663]],
E           
E                    [[1.2278]],
E           
E                    [[1.0509]],
E           
E                    [[1.1616]],
E           
E                    [[1.2289]],
E           
E                    [[0.7740]],
E           
E                    [[0.9030]],
E           
E                    [[1.5688]],
E           
E                    [[0.7593]],
E           
E                    [[1.1292]],
E           
E                    [[1.6597]],
E           
E                    [[1.3457]],
E           
E                    [[1.1793]],
E           
E                    [[0.7318]],
E           
E                    [[1.4128]],
E           
E                    [[0.8090]],
E           
E                    [[1.0232]],
E           
E                    [[0.9973]],
E           
E                    [[1.0911]],
E           
E                    [[1.1706]],
E           
E                    [[1.5775]],
E           
E                    [[1.2275]],
E           
E                    [[1.6129]],
E           
E                    [[1.4710]],
E           
E                    [[0.8490]],
E           
E                    [[1.3893]],
E           
E                    [[0.8116]],
E           
E                    [[0.9532]],
E           
E                    [[1.3122]]]]), compiled_model=tensor([[[[1.1614]],
E           
E                    [[1.5250]],
E           
E                    [[1.7245]],
E           
E                    [[0.9210]],
E           
E                    [[1.3506]],
E           
E                    [[1.6945]],
E           
E                    [[0.8003]],
E           
E                    [[2.0041]],
E           
E                    [[1.3812]],
E           
E                    [[1.5068]],
E           
E                    [[0.6095]],
E           
E                    [[0.6455]],
E           
E                    [[1.2008]],
E           
E                    [[1.9356]],
E           
E                    [[1.2990]],
E           
E                    [[1.6350]],
E           
E                    [[1.2477]],
E           
E                    [[1.5347]],
E           
E                    [[0.8691]],
E           
E                    [[0.4297]],
E           
E                    [[1.2928]],
E           
E                    [[1.7325]],
E           
E                    [[1.5078]],
E           
E                    [[2.4640]],
E           
E                    [[0.8934]],
E           
E                    [[1.9886]],
E           
E                    [[2.6152]],
E           
E                    [[1.1116]],
E           
E                    [[1.2592]],
E           
E                    [[1.4635]],
E           
E                    [[1.7133]],
E           
E                    [[1.7562]],
E           
E                    [[1.4653]],
E           
E                    [[0.9121]],
E           
E                    [[0.5602]],
E           
E                    [[1.0100]],
E           
E                    [[0.9547]],
E           
E                    [[1.8345]],
E           
E                    [[1.3018]],
E           
E                    [[1.6498]],
E           
E                    [[1.5868]],
E           
E                    [[1.5327]],
E           
E                    [[1.3922]],
E           
E                    [[0.7407]],
E           
E                    [[0.9190]],
E           
E                    [[0.9815]],
E           
E                    [[1.7915]],
E           
E                    [[1.4641]],
E           
E                    [[0.9672]],
E           
E                    [[1.7066]],
E           
E                    [[2.0952]],
E           
E                    [[1.9136]],
E           
E                    [[1.5808]],
E           
E                    [[1.3044]],
E           
E                    [[2.0042]],
E           
E                    [[0.9785]],
E           
E                    [[1.1542]],
E           
E                    [[0.9825]],
E           
E                    [[0.8566]],
E           
E                    [[0.8018]],
E           
E                    [[1.3843]],
E           
E                    [[1.1908]],
E           
E                    [[0.5914]],
E           
E                    [[0.8428]],
E           
E                    [[1.6203]],
E           
E                    [[0.5647]],
E           
E                    [[1.2239]],
E           
E                    [[0.9477]],
E           
E                    [[1.0690]],
E           
E                    [[1.5699]],
E           
E                    [[0.3550]],
E           
E                    [[0.9320]],
E           
E                    [[1.2947]],
E           
E                    [[1.0430]],
E           
E                    [[1.5184]],
E           
E                    [[1.6541]],
E           
E                    [[1.2974]],
E           
E                    [[0.5023]],
E           
E                    [[0.6361]],
E           
E                    [[0.6101]],
E           
E                    [[0.7077]],
E           
E                    [[1.2618]],
E           
E                    [[1.5700]],
E           
E                    [[0.8342]],
E           
E                    [[0.8325]],
E           
E                    [[0.9207]],
E           
E                    [[1.1245]],
E           
E                    [[0.8103]],
E           
E                    [[1.2340]],
E           
E                    [[0.7663]],
E           
E                    [[0.7902]],
E           
E                    [[1.2921]],
E           
E                    [[1.7042]],
E           
E                    [[1.6375]],
E           
E                    [[0.7990]],
E           
E                    [[0.7427]],
E           
E                    [[1.4832]],
E           
E                    [[0.8614]],
E           
E                    [[0.1956]],
E           
E                    [[0.2821]],
E           
E                    [[1.9692]],
E           
E                    [[1.6543]],
E           
E                    [[0.4364]],
E           
E                    [[1.0698]],
E           
E                    [[0.9013]],
E           
E                    [[1.4908]],
E           
E                    [[1.0607]],
E           
E                    [[1.0017]],
E           
E                    [[0.8578]],
E           
E                    [[0.8996]],
E           
E                    [[1.2058]],
E           
E                    [[1.5769]],
E           
E                    [[0.3948]],
E           
E                    [[1.9032]],
E           
E                    [[1.5842]],
E           
E                    [[0.8509]],
E           
E                    [[0.5622]],
E           
E                    [[1.1660]],
E           
E                    [[0.8977]],
E           
E                    [[1.5093]],
E           
E                    [[1.1062]],
E           
E                    [[1.2246]],
E           
E                    [[0.8448]],
E           
E                    [[1.4493]],
E           
E                    [[0.3505]],
E           
E                    [[0.9474]],
E           
E                    [[0.5256]],
E           
E                    [[0.8694]],
E           
E                    [[0.4868]],
E           
E                    [[0.0969]],
E           
E                    [[0.4921]],
E           
E                    [[1.5016]],
E           
E                    [[0.9448]],
E           
E                    [[1.4434]],
E           
E                    [[1.7585]],
E           
E                    [[0.5021]],
E           
E                    [[0.6727]],
E           
E                    [[0.8761]],
E           
E                    [[0.7765]],
E           
E                    [[1.6651]],
E           
E                    [[1.0956]],
E           
E                    [[1.0736]],
E           
E                    [[0.9917]],
E           
E                    [[0.6800]],
E           
E                    [[0.9621]],
E           
E                    [[1.1723]],
E           
E                    [[1.6984]],
E           
E                    [[1.3828]],
E           
E                    [[1.1961]],
E           
E                    [[0.4888]],
E           
E                    [[0.7521]],
E           
E                    [[1.0235]],
E           
E                    [[1.0640]],
E           
E                    [[1.7740]],
E           
E                    [[1.5297]],
E           
E                    [[0.8286]],
E           
E                    [[1.1369]],
E           
E                    [[0.8487]],
E           
E                    [[0.9517]],
E           
E                    [[0.6779]],
E           
E                    [[0.6218]],
E           
E                    [[0.6213]],
E           
E                    [[0.1666]],
E           
E                    [[0.9039]],
E           
E                    [[1.2772]],
E           
E                    [[0.9496]],
E           
E                    [[0.4835]],
E           
E                    [[1.5748]],
E           
E                    [[0.8697]],
E           
E                    [[1.0034]],
E           
E                    [[1.2036]],
E           
E                    [[1.2556]],
E           
E                    [[1.6560]],
E           
E                    [[0.8015]],
E           
E                    [[1.0273]],
E           
E                    [[1.6960]],
E           
E                    [[0.7601]],
E           
E                    [[1.0579]],
E           
E                    [[1.1157]],
E           
E                    [[0.5176]],
E           
E                    [[1.4782]],
E           
E                    [[0.9160]],
E           
E                    [[1.0034]],
E           
E                    [[0.9725]],
E           
E                    [[1.1045]],
E           
E                    [[1.0801]],
E           
E                    [[0.9276]],
E           
E                    [[1.3573]],
E           
E                    [[0.6147]],
E           
E                    [[0.9622]],
E           
E                    [[1.4226]],
E           
E                    [[1.5819]],
E           
E                    [[0.8953]],
E           
E                    [[0.5653]],
E           
E                    [[0.5581]],
E           
E                    [[0.3532]],
E           
E                    [[0.4953]],
E           
E                    [[1.3510]],
E           
E                    [[0.3470]],
E           
E                    [[1.1750]],
E           
E                    [[1.4454]],
E           
E                    [[1.3551]],
E           
E                    [[0.2888]],
E           
E                    [[0.4776]],
E           
E                    [[0.8189]],
E           
E                    [[0.9688]],
E           
E                    [[1.0687]],
E           
E                    [[0.9678]],
E           
E                    [[0.7002]],
E           
E                    [[0.5775]],
E           
E                    [[0.8948]],
E           
E                    [[1.2374]],
E           
E                    [[0.5895]],
E           
E                    [[1.3014]],
E           
E                    [[0.7965]],
E           
E                    [[1.2102]],
E           
E                    [[0.6317]],
E           
E                    [[0.2871]],
E           
E                    [[1.8184]],
E           
E                    [[0.8634]],
E           
E                    [[1.4611]],
E           
E                    [[1.7472]],
E           
E                    [[0.8506]],
E           
E                    [[1.4314]],
E           
E                    [[0.5936]],
E           
E                    [[1.4848]],
E           
E                    [[0.2429]],
E           
E                    [[0.7143]],
E           
E                    [[0.3413]],
E           
E                    [[0.7312]],
E           
E                    [[1.1133]],
E           
E                    [[1.0198]],
E           
E                    [[1.2218]],
E           
E                    [[1.7162]],
E           
E                    [[1.3755]],
E           
E                    [[0.3494]],
E           
E                    [[0.8366]],
E           
E                    [[0.4923]],
E           
E                    [[1.0076]],
E           
E                    [[1.6403]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 144, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.5471]],

         [[0.8191]],

         [[0.1393]],

         [[0.1829]],

         [[0.3583]],

         [[0.6849]],

         [[0.5409]],

         [[0.9473]],

         [[0.5065]],

         [[0.6831]],

         [[0.3997]],

         [[0.4526]],

         [[0.0732]],

         [[0.2197]],

         [[0.3447]],

         [[0.5694]],

         [[0.7485]],

         [[0.8509]],

         [[0.2119]],

         [[0.3331]],

         [[0.7324]],

         [[0.9660]],

         [[0.4479]],

         [[0.9250]],

         [[0.4702]],

         [[0.6037]],

         [[1.0036]],

         [[0.0870]],

         [[0.2361]],

         [[0.4243]],

         [[0.3559]],

         [[0.9828]],

         [[0.2267]],

         [[0.3207]],

         [[0.2015]],

         [[0.0826]],

         [[0.2590]],

         [[0.9806]],

         [[0.7739]],

         [[0.7932]],

         [[0.5771]],

         [[0.2945]],

         [[0.6354]],

         [[0.0840]],

         [[0.1896]],

         [[0.2931]],

         [[0.8663]],

         [[0.8440]],

         [[0.3291]],

         [[0.5328]],

         [[0.8706]],

         [[1.0479]],

         [[0.7493]],

         [[0.6184]],

         [[0.8861]],

         [[0.2564]],

         [[0.6440]],

         [[0.1632]],

         [[0.2043]],

         [[0.2925]],

         [[0.7771]],

         [[0.7519]],

         [[0.2547]],

         [[0.7019]],

         [[0.8253]],

         [[0.4877]],

         [[0.5699]],

         [[0.6667]],

         [[0.8610]],

         [[1.0309]],

         [[0.1655]],

         [[0.3676]],

         [[0.7473]],

         [[0.9651]],

         [[0.9859]],

         [[0.9920]],

         [[0.6503]],

         [[0.1160]],

         [[0.5968]],

         [[0.2380]],

         [[0.0849]],

         [[0.9951]],

         [[0.9310]],

         [[0.0521]],

         [[0.6444]],

         [[0.4666]],

         [[0.4686]],

         [[0.3220]],

         [[0.7431]],

         [[0.2547]],

         [[0.7341]],

         [[0.8037]],

         [[0.9088]],

         [[0.7378]],

         [[0.0560]],

         [[0.2265]],

         [[0.8005]],

         [[0.6555]],

         [[0.1608]],

         [[0.2629]],

         [[1.0212]],

         [[0.8877]],

         [[0.3328]],

         [[0.4250]],

         [[0.0745]],

         [[0.5419]],

         [[0.1743]],

         [[0.1652]],

         [[0.5233]],

         [[0.6259]],

         [[0.3461]],

         [[0.8475]],

         [[0.2466]],

         [[1.0045]],

         [[0.8935]],

         [[0.1292]],

         [[0.4264]],

         [[0.5734]],

         [[0.6238]],

         [[0.6694]],

         [[0.7471]],

         [[0.5808]],

         [[0.3069]],

         [[0.7874]],

         [[0.0712]],

         [[0.2545]],

         [[0.4257]],

         [[0.3073]],

         [[0.3759]],

         [[0.1410]],

         [[0.4445]],

         [[0.6577]],

         [[0.2251]],

         [[0.5252]],

         [[0.9088]],

         [[0.4994]],

         [[0.5647]],

         [[0.5077]],

         [[0.6520]],

         [[0.8688]],

         [[1.0245]],

         [[0.8684]],

         [[1.0255]],

         [[0.5147]]]]), compiled_model=tensor([[[[0.5471]],

         [[1.0312]],

         [[0.9289]],

         [[0.6288]],

         [[0.5589]],

         [[0.7509]],

         [[0.5222]],

         [[0.9744]],

         [[0.8542]],

         [[1.4065]],

         [[1.1192]],

         [[0.4195]],

         [[0.8342]],

         [[0.2776]],

         [[0.6882]],

         [[0.8158]],

         [[1.1014]],

         [[1.2018]],

         [[0.2124]],

         [[0.3505]],

         [[1.1034]],

         [[1.4217]],

         [[0.6700]],

         [[1.5625]],

         [[0.4694]],

         [[1.0192]],

         [[1.8924]],

         [[0.3322]],

         [[1.1367]],

         [[1.0545]],

         [[0.3539]],

         [[1.7483]],

         [[0.6182]],

         [[0.5466]],

         [[1.0505]],

         [[0.1277]],

         [[0.7618]],

         [[1.3251]],

         [[1.5802]],

         [[1.3819]],

         [[1.2665]],

         [[0.9202]],

         [[0.9644]],

         [[0.4280]],

         [[0.2267]],

         [[1.0132]],

         [[1.7125]],

         [[1.6353]],

         [[0.4256]],

         [[1.0043]],

         [[0.9673]],

         [[1.2218]],

         [[0.9071]],

         [[1.2384]],

         [[1.0373]],

         [[0.6947]],

         [[1.1142]],

         [[0.9347]],

         [[0.2755]],

         [[0.3985]],

         [[0.9359]],

         [[1.5510]],

         [[0.5241]],

         [[1.5728]],

         [[1.4553]],

         [[1.0002]],

         [[1.0154]],

         [[1.0170]],

         [[1.3729]],

         [[1.3659]],

         [[0.6112]],

         [[0.8806]],

         [[0.8054]],

         [[1.1522]],

         [[1.8389]],

         [[1.0354]],

         [[1.0636]],

         [[1.0598]],

         [[1.2266]],

         [[0.7014]],

         [[0.1007]],

         [[1.6919]],

         [[1.0240]],

         [[0.3593]],

         [[0.9258]],

         [[0.8417]],

         [[0.9232]],

         [[1.1835]],

         [[1.2547]],

         [[1.1517]],

         [[1.4892]],

         [[0.9367]],

         [[1.5822]],

         [[0.8335]],

         [[0.2932]],

         [[0.8227]],

         [[1.4148]],

         [[1.3614]],

         [[1.7460]],

         [[1.0011]],

         [[2.0135]],

         [[1.8973]],

         [[0.5922]],

         [[1.4818]],

         [[0.9493]],

         [[1.3655]],

         [[0.3841]],

         [[0.3581]],

         [[1.6510]],

         [[2.3418]],

         [[1.3003]],

         [[1.9132]],

         [[0.7457]],

         [[1.6884]],

         [[1.5507]],

         [[0.2258]],

         [[0.9867]],

         [[1.3399]],

         [[1.6837]],

         [[2.2084]],

         [[1.1702]],

         [[1.9656]],

         [[1.9185]],

         [[1.8120]],

         [[1.0944]],

         [[1.2938]],

         [[1.7830]],

         [[1.0806]],

         [[1.6145]],

         [[0.7325]],

         [[0.8031]],

         [[1.5852]],

         [[0.9209]],

         [[1.3791]],

         [[1.4366]],

         [[1.3561]],

         [[1.5744]],

         [[1.7459]],

         [[1.4088]],

         [[1.5254]],

         [[1.7539]],

         [[1.5568]],

         [[1.9508]],

         [[1.1347]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 144, 1, 1), torch.float32)], {'model_name': ['pt_mobilenetv3_mobilenet_v3_small_img_cls_torchhub', 'pt_mobilnetv3_mobilenetv3_small_100_img_cls_timm']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0db8040>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5e04795a0>
fw_out = tensor([[[[0.5471]],

         [[0.8191]],

         [[0.1393]],

         [[0.1829]],

         [[0.3583]],

        ...6520]],

         [[0.8688]],

         [[1.0245]],

         [[0.8684]],

         [[1.0255]],

         [[0.5147]]]])
co_out = tensor([[[[0.5471]],

         [[1.0312]],

         [[0.9289]],

         [[0.6288]],

         [[0.5589]],

        ...4088]],

         [[1.5254]],

         [[1.7539]],

         [[1.5568]],

         [[1.9508]],

         [[1.1347]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.5471]],
E           
E                    [[0.8191]],
E           
E                    [[0.1393]],
E           
E                    [[0.1829]],
E           
E                    [[0.3583]],
E           
E                    [[0.6849]],
E           
E                    [[0.5409]],
E           
E                    [[0.9473]],
E           
E                    [[0.5065]],
E           
E                    [[0.6831]],
E           
E                    [[0.3997]],
E           
E                    [[0.4526]],
E           
E                    [[0.0732]],
E           
E                    [[0.2197]],
E           
E                    [[0.3447]],
E           
E                    [[0.5694]],
E           
E                    [[0.7485]],
E           
E                    [[0.8509]],
E           
E                    [[0.2119]],
E           
E                    [[0.3331]],
E           
E                    [[0.7324]],
E           
E                    [[0.9660]],
E           
E                    [[0.4479]],
E           
E                    [[0.9250]],
E           
E                    [[0.4702]],
E           
E                    [[0.6037]],
E           
E                    [[1.0036]],
E           
E                    [[0.0870]],
E           
E                    [[0.2361]],
E           
E                    [[0.4243]],
E           
E                    [[0.3559]],
E           
E                    [[0.9828]],
E           
E                    [[0.2267]],
E           
E                    [[0.3207]],
E           
E                    [[0.2015]],
E           
E                    [[0.0826]],
E           
E                    [[0.2590]],
E           
E                    [[0.9806]],
E           
E                    [[0.7739]],
E           
E                    [[0.7932]],
E           
E                    [[0.5771]],
E           
E                    [[0.2945]],
E           
E                    [[0.6354]],
E           
E                    [[0.0840]],
E           
E                    [[0.1896]],
E           
E                    [[0.2931]],
E           
E                    [[0.8663]],
E           
E                    [[0.8440]],
E           
E                    [[0.3291]],
E           
E                    [[0.5328]],
E           
E                    [[0.8706]],
E           
E                    [[1.0479]],
E           
E                    [[0.7493]],
E           
E                    [[0.6184]],
E           
E                    [[0.8861]],
E           
E                    [[0.2564]],
E           
E                    [[0.6440]],
E           
E                    [[0.1632]],
E           
E                    [[0.2043]],
E           
E                    [[0.2925]],
E           
E                    [[0.7771]],
E           
E                    [[0.7519]],
E           
E                    [[0.2547]],
E           
E                    [[0.7019]],
E           
E                    [[0.8253]],
E           
E                    [[0.4877]],
E           
E                    [[0.5699]],
E           
E                    [[0.6667]],
E           
E                    [[0.8610]],
E           
E                    [[1.0309]],
E           
E                    [[0.1655]],
E           
E                    [[0.3676]],
E           
E                    [[0.7473]],
E           
E                    [[0.9651]],
E           
E                    [[0.9859]],
E           
E                    [[0.9920]],
E           
E                    [[0.6503]],
E           
E                    [[0.1160]],
E           
E                    [[0.5968]],
E           
E                    [[0.2380]],
E           
E                    [[0.0849]],
E           
E                    [[0.9951]],
E           
E                    [[0.9310]],
E           
E                    [[0.0521]],
E           
E                    [[0.6444]],
E           
E                    [[0.4666]],
E           
E                    [[0.4686]],
E           
E                    [[0.3220]],
E           
E                    [[0.7431]],
E           
E                    [[0.2547]],
E           
E                    [[0.7341]],
E           
E                    [[0.8037]],
E           
E                    [[0.9088]],
E           
E                    [[0.7378]],
E           
E                    [[0.0560]],
E           
E                    [[0.2265]],
E           
E                    [[0.8005]],
E           
E                    [[0.6555]],
E           
E                    [[0.1608]],
E           
E                    [[0.2629]],
E           
E                    [[1.0212]],
E           
E                    [[0.8877]],
E           
E                    [[0.3328]],
E           
E                    [[0.4250]],
E           
E                    [[0.0745]],
E           
E                    [[0.5419]],
E           
E                    [[0.1743]],
E           
E                    [[0.1652]],
E           
E                    [[0.5233]],
E           
E                    [[0.6259]],
E           
E                    [[0.3461]],
E           
E                    [[0.8475]],
E           
E                    [[0.2466]],
E           
E                    [[1.0045]],
E           
E                    [[0.8935]],
E           
E                    [[0.1292]],
E           
E                    [[0.4264]],
E           
E                    [[0.5734]],
E           
E                    [[0.6238]],
E           
E                    [[0.6694]],
E           
E                    [[0.7471]],
E           
E                    [[0.5808]],
E           
E                    [[0.3069]],
E           
E                    [[0.7874]],
E           
E                    [[0.0712]],
E           
E                    [[0.2545]],
E           
E                    [[0.4257]],
E           
E                    [[0.3073]],
E           
E                    [[0.3759]],
E           
E                    [[0.1410]],
E           
E                    [[0.4445]],
E           
E                    [[0.6577]],
E           
E                    [[0.2251]],
E           
E                    [[0.5252]],
E           
E                    [[0.9088]],
E           
E                    [[0.4994]],
E           
E                    [[0.5647]],
E           
E                    [[0.5077]],
E           
E                    [[0.6520]],
E           
E                    [[0.8688]],
E           
E                    [[1.0245]],
E           
E                    [[0.8684]],
E           
E                    [[1.0255]],
E           
E                    [[0.5147]]]]), compiled_model=tensor([[[[0.5471]],
E           
E                    [[1.0312]],
E           
E                    [[0.9289]],
E           
E                    [[0.6288]],
E           
E                    [[0.5589]],
E           
E                    [[0.7509]],
E           
E                    [[0.5222]],
E           
E                    [[0.9744]],
E           
E                    [[0.8542]],
E           
E                    [[1.4065]],
E           
E                    [[1.1192]],
E           
E                    [[0.4195]],
E           
E                    [[0.8342]],
E           
E                    [[0.2776]],
E           
E                    [[0.6882]],
E           
E                    [[0.8158]],
E           
E                    [[1.1014]],
E           
E                    [[1.2018]],
E           
E                    [[0.2124]],
E           
E                    [[0.3505]],
E           
E                    [[1.1034]],
E           
E                    [[1.4217]],
E           
E                    [[0.6700]],
E           
E                    [[1.5625]],
E           
E                    [[0.4694]],
E           
E                    [[1.0192]],
E           
E                    [[1.8924]],
E           
E                    [[0.3322]],
E           
E                    [[1.1367]],
E           
E                    [[1.0545]],
E           
E                    [[0.3539]],
E           
E                    [[1.7483]],
E           
E                    [[0.6182]],
E           
E                    [[0.5466]],
E           
E                    [[1.0505]],
E           
E                    [[0.1277]],
E           
E                    [[0.7618]],
E           
E                    [[1.3251]],
E           
E                    [[1.5802]],
E           
E                    [[1.3819]],
E           
E                    [[1.2665]],
E           
E                    [[0.9202]],
E           
E                    [[0.9644]],
E           
E                    [[0.4280]],
E           
E                    [[0.2267]],
E           
E                    [[1.0132]],
E           
E                    [[1.7125]],
E           
E                    [[1.6353]],
E           
E                    [[0.4256]],
E           
E                    [[1.0043]],
E           
E                    [[0.9673]],
E           
E                    [[1.2218]],
E           
E                    [[0.9071]],
E           
E                    [[1.2384]],
E           
E                    [[1.0373]],
E           
E                    [[0.6947]],
E           
E                    [[1.1142]],
E           
E                    [[0.9347]],
E           
E                    [[0.2755]],
E           
E                    [[0.3985]],
E           
E                    [[0.9359]],
E           
E                    [[1.5510]],
E           
E                    [[0.5241]],
E           
E                    [[1.5728]],
E           
E                    [[1.4553]],
E           
E                    [[1.0002]],
E           
E                    [[1.0154]],
E           
E                    [[1.0170]],
E           
E                    [[1.3729]],
E           
E                    [[1.3659]],
E           
E                    [[0.6112]],
E           
E                    [[0.8806]],
E           
E                    [[0.8054]],
E           
E                    [[1.1522]],
E           
E                    [[1.8389]],
E           
E                    [[1.0354]],
E           
E                    [[1.0636]],
E           
E                    [[1.0598]],
E           
E                    [[1.2266]],
E           
E                    [[0.7014]],
E           
E                    [[0.1007]],
E           
E                    [[1.6919]],
E           
E                    [[1.0240]],
E           
E                    [[0.3593]],
E           
E                    [[0.9258]],
E           
E                    [[0.8417]],
E           
E                    [[0.9232]],
E           
E                    [[1.1835]],
E           
E                    [[1.2547]],
E           
E                    [[1.1517]],
E           
E                    [[1.4892]],
E           
E                    [[0.9367]],
E           
E                    [[1.5822]],
E           
E                    [[0.8335]],
E           
E                    [[0.2932]],
E           
E                    [[0.8227]],
E           
E                    [[1.4148]],
E           
E                    [[1.3614]],
E           
E                    [[1.7460]],
E           
E                    [[1.0011]],
E           
E                    [[2.0135]],
E           
E                    [[1.8973]],
E           
E                    [[0.5922]],
E           
E                    [[1.4818]],
E           
E                    [[0.9493]],
E           
E                    [[1.3655]],
E           
E                    [[0.3841]],
E           
E                    [[0.3581]],
E           
E                    [[1.6510]],
E           
E                    [[2.3418]],
E           
E                    [[1.3003]],
E           
E                    [[1.9132]],
E           
E                    [[0.7457]],
E           
E                    [[1.6884]],
E           
E                    [[1.5507]],
E           
E                    [[0.2258]],
E           
E                    [[0.9867]],
E           
E                    [[1.3399]],
E           
E                    [[1.6837]],
E           
E                    [[2.2084]],
E           
E                    [[1.1702]],
E           
E                    [[1.9656]],
E           
E                    [[1.9185]],
E           
E                    [[1.8120]],
E           
E                    [[1.0944]],
E           
E                    [[1.2938]],
E           
E                    [[1.7830]],
E           
E                    [[1.0806]],
E           
E                    [[1.6145]],
E           
E                    [[0.7325]],
E           
E                    [[0.8031]],
E           
E                    [[1.5852]],
E           
E                    [[0.9209]],
E           
E                    [[1.3791]],
E           
E                    [[1.4366]],
E           
E                    [[1.3561]],
E           
E                    [[1.5744]],
E           
E                    [[1.7459]],
E           
E                    [[1.4088]],
E           
E                    [[1.5254]],
E           
E                    [[1.7539]],
E           
E                    [[1.5568]],
E           
E                    [[1.9508]],
E           
E                    [[1.1347]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 288, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.8819]],

         [[1.1539]],

         [[0.4741]],

         [[0.5177]],

         [[0.6931]],

         [[1.0197]],

         [[0.8758]],

         [[1.2821]],

         [[0.8413]],

         [[1.0180]],

         [[0.7346]],

         [[0.7874]],

         [[0.4080]],

         [[0.5545]],

         [[0.6796]],

         [[0.9042]],

         [[1.0833]],

         [[1.1857]],

         [[0.5467]],

         [[0.6679]],

         [[1.0673]],

         [[1.3009]],

         [[0.7828]],

         [[1.2598]],

         [[0.8051]],

         [[0.9386]],

         [[1.3384]],

         [[0.4218]],

         [[0.5709]],

         [[0.7591]],

         [[0.6908]],

         [[1.3177]],

         [[0.5616]],

         [[0.6555]],

         [[0.5363]],

         [[0.4174]],

         [[0.5938]],

         [[1.3155]],

         [[1.1088]],

         [[1.1280]],

         [[0.9120]],

         [[0.6293]],

         [[0.9703]],

         [[0.4188]],

         [[0.5244]],

         [[0.6279]],

         [[1.2011]],

         [[1.1788]],

         [[0.6639]],

         [[0.8676]],

         [[1.2054]],

         [[1.3827]],

         [[1.0841]],

         [[0.9532]],

         [[1.2209]],

         [[0.5913]],

         [[0.9788]],

         [[0.4980]],

         [[0.5391]],

         [[0.6274]],

         [[1.1119]],

         [[1.0867]],

         [[0.5895]],

         [[1.0367]],

         [[1.1601]],

         [[0.8226]],

         [[0.9048]],

         [[1.0015]],

         [[1.1959]],

         [[1.3658]],

         [[0.5004]],

         [[0.7024]],

         [[1.0822]],

         [[1.2999]],

         [[1.3208]],

         [[1.3268]],

         [[0.9852]],

         [[0.4509]],

         [[0.9317]],

         [[0.5729]],

         [[0.4197]],

         [[1.3299]],

         [[1.2658]],

         [[0.3869]],

         [[0.9792]],

         [[0.8014]],

         [[0.8034]],

         [[0.6568]],

         [[1.0779]],

         [[0.5895]],

         [[1.0690]],

         [[1.1385]],

         [[1.2436]],

         [[1.0726]],

         [[0.3908]],

         [[0.5613]],

         [[1.1353]],

         [[0.9903]],

         [[0.4956]],

         [[0.5978]],

         [[1.3560]],

         [[1.2226]],

         [[0.6676]],

         [[0.7598]],

         [[0.4094]],

         [[0.8767]],

         [[0.5091]],

         [[0.5000]],

         [[0.8581]],

         [[0.9607]],

         [[0.6809]],

         [[1.1824]],

         [[0.5814]],

         [[1.3393]],

         [[1.2283]],

         [[0.4640]],

         [[0.7612]],

         [[0.9082]],

         [[0.9586]],

         [[1.0042]],

         [[1.0819]],

         [[0.9156]],

         [[0.6417]],

         [[1.1223]],

         [[0.4060]],

         [[0.5893]],

         [[0.7605]],

         [[0.6421]],

         [[0.7107]],

         [[0.4759]],

         [[0.7793]],

         [[0.9925]],

         [[0.5599]],

         [[0.8600]],

         [[1.2436]],

         [[0.8343]],

         [[0.8996]],

         [[0.8425]],

         [[0.9869]],

         [[1.2036]],

         [[1.3593]],

         [[1.2032]],

         [[1.3604]],

         [[0.8495]],

         [[0.4365]],

         [[0.6486]],

         [[1.2261]],

         [[0.8824]],

         [[0.6371]],

         [[0.5025]],

         [[0.4177]],

         [[0.4637]],

         [[0.7842]],

         [[1.1599]],

         [[1.1560]],

         [[0.4034]],

         [[1.1976]],

         [[0.4944]],

         [[0.7800]],

         [[0.6829]],

         [[0.7894]],

         [[0.7875]],

         [[0.4370]],

         [[0.4539]],

         [[0.8074]],

         [[0.8921]],

         [[0.6585]],

         [[1.0740]],

         [[0.4356]],

         [[0.8519]],

         [[1.3254]],

         [[0.6817]],

         [[1.3372]],

         [[1.0667]],

         [[0.4344]],

         [[1.2020]],

         [[0.8280]],

         [[0.6625]],

         [[1.2855]],

         [[0.4816]],

         [[0.9393]],

         [[0.7810]],

         [[1.2427]],

         [[1.0252]],

         [[1.1259]],

         [[1.0622]],

         [[0.7654]],

         [[0.7805]],

         [[0.4736]],

         [[1.1566]],

         [[1.2827]],

         [[1.2278]],

         [[0.5330]],

         [[0.9080]],

         [[0.5332]],

         [[0.6104]],

         [[0.5943]],

         [[1.0565]],

         [[0.5877]],

         [[0.8748]],

         [[0.9067]],

         [[1.2080]],

         [[0.5077]],

         [[0.5424]],

         [[0.5953]],

         [[1.2356]],

         [[0.7059]],

         [[1.3074]],

         [[1.0665]],

         [[0.9490]],

         [[0.8819]],

         [[0.7868]],

         [[0.9484]],

         [[0.7715]],

         [[0.8821]],

         [[0.9495]],

         [[0.4946]],

         [[0.6236]],

         [[1.2894]],

         [[0.4799]],

         [[0.8498]],

         [[1.3803]],

         [[1.0663]],

         [[0.8998]],

         [[0.4524]],

         [[1.1334]],

         [[0.5295]],

         [[0.7437]],

         [[0.7179]],

         [[0.8116]],

         [[0.8911]],

         [[1.2981]],

         [[0.9481]],

         [[1.3335]],

         [[1.1915]],

         [[0.5696]],

         [[1.1099]],

         [[0.5322]],

         [[0.6737]],

         [[1.0327]],

         [[1.0508]],

         [[1.2608]],

         [[0.7247]],

         [[0.8865]],

         [[1.1431]],

         [[0.4021]],

         [[1.2472]],

         [[0.4722]],

         [[0.8926]],

         [[0.8007]],

         [[0.6223]],

         [[0.9517]],

         [[1.2991]],

         [[0.7395]],

         [[0.5888]],

         [[0.7007]],

         [[0.3901]],

         [[1.1114]],

         [[0.6455]],

         [[0.5520]],

         [[0.5976]],

         [[1.1731]],

         [[1.1504]],

         [[1.2694]],

         [[1.0670]],

         [[0.7187]],

         [[0.7459]],

         [[1.0334]],

         [[1.2967]],

         [[1.0216]],

         [[0.6491]],

         [[0.6506]],

         [[0.4129]],

         [[0.9937]],

         [[0.6051]],

         [[0.4399]],

         [[1.3241]],

         [[0.5610]],

         [[0.8288]],

         [[1.0289]],

         [[0.9016]],

         [[0.5492]],

         [[0.4815]],

         [[1.2842]],

         [[0.9671]],

         [[1.3005]],

         [[0.7180]],

         [[1.0329]]]]), compiled_model=tensor([[[[0.8819]],

         [[1.2906]],

         [[0.6118]],

         [[0.2749]],

         [[0.6144]],

         [[0.9873]],

         [[0.7578]],

         [[1.2064]],

         [[1.0141]],

         [[1.6125]],

         [[0.6422]],

         [[0.4687]],

         [[0.6595]],

         [[1.1170]],

         [[0.3022]],

         [[1.4577]],

         [[1.5588]],

         [[1.4526]],

         [[0.9559]],

         [[0.4654]],

         [[0.7262]],

         [[1.8695]],

         [[1.1443]],

         [[1.0461]],

         [[0.5686]],

         [[1.1868]],

         [[1.7802]],

         [[0.9739]],

         [[0.7482]],

         [[1.1661]],

         [[1.0003]],

         [[1.6088]],

         [[0.4256]],

         [[0.4077]],

         [[1.1362]],

         [[0.6355]],

         [[0.2586]],

         [[1.2449]],

         [[1.2727]],

         [[1.3262]],

         [[0.6524]],

         [[1.1805]],

         [[0.6235]],

         [[0.7781]],

         [[0.4177]],

         [[0.3883]],

         [[1.5366]],

         [[1.1733]],

         [[0.5795]],

         [[0.9295]],

         [[1.1412]],

         [[1.9626]],

         [[0.7275]],

         [[0.8961]],

         [[1.2745]],

         [[0.5666]],

         [[0.7864]],

         [[0.6786]],

         [[0.6635]],

         [[1.0594]],

         [[1.3904]],

         [[1.5434]],

         [[0.3507]],

         [[1.5682]],

         [[1.0653]],

         [[0.9305]],

         [[1.2032]],

         [[1.0125]],

         [[1.1776]],

         [[1.7073]],

         [[0.9749]],

         [[0.4916]],

         [[1.4845]],

         [[1.7454]],

         [[1.6429]],

         [[1.6019]],

         [[1.3679]],

         [[1.0388]],

         [[1.3856]],

         [[0.7031]],

         [[0.1927]],

         [[1.4320]],

         [[1.0929]],

         [[0.9422]],

         [[0.9451]],

         [[0.9518]],

         [[1.1292]],

         [[0.9450]],

         [[0.7822]],

         [[0.3811]],

         [[1.2687]],

         [[0.8856]],

         [[1.5526]],

         [[1.3195]],

         [[0.3105]],

         [[0.2802]],

         [[1.3263]],

         [[0.8255]],

         [[1.0898]],

         [[1.0350]],

         [[1.7904]],

         [[1.5708]],

         [[0.9769]],

         [[0.4988]],

         [[0.9998]],

         [[0.8888]],

         [[0.9132]],

         [[1.0734]],

         [[1.0686]],

         [[0.7128]],

         [[0.7715]],

         [[1.0055]],

         [[0.2886]],

         [[1.8109]],

         [[1.1538]],

         [[0.9800]],

         [[0.5849]],

         [[1.2297]],

         [[1.0393]],

         [[1.0629]],

         [[1.4850]],

         [[0.5772]],

         [[1.1739]],

         [[1.1341]],

         [[0.7462]],

         [[0.4069]],

         [[0.6140]],

         [[0.7448]],

         [[0.7054]],

         [[0.3869]],

         [[1.1642]],

         [[1.0523]],

         [[0.4691]],

         [[0.9172]],

         [[1.8058]],

         [[0.5387]],

         [[0.9307]],

         [[0.8787]],

         [[1.3446]],

         [[1.7301]],

         [[1.1597]],

         [[1.2249]],

         [[1.0094]],

         [[0.5941]],

         [[0.7383]],

         [[0.7085]],

         [[1.7106]],

         [[0.9492]],

         [[0.5232]],

         [[0.4519]],

         [[0.5850]],

         [[0.8983]],

         [[0.9395]],

         [[1.3882]],

         [[1.0947]],

         [[0.7077]],

         [[0.9744]],

         [[0.9194]],

         [[0.8728]],

         [[1.2173]],

         [[0.6492]],

         [[1.3920]],

         [[0.8690]],

         [[0.1645]],

         [[0.7734]],

         [[1.4431]],

         [[0.9427]],

         [[1.6042]],

         [[0.4451]],

         [[0.7527]],

         [[1.7713]],

         [[0.6460]],

         [[1.9049]],

         [[1.4731]],

         [[1.0465]],

         [[1.6934]],

         [[0.7938]],

         [[1.1985]],

         [[1.0119]],

         [[1.0852]],

         [[1.0523]],

         [[0.6674]],

         [[1.5031]],

         [[1.4079]],

         [[1.2637]],

         [[1.5320]],

         [[0.8442]],

         [[0.4035]],

         [[0.9104]],

         [[1.2754]],

         [[1.6776]],

         [[1.0952]],

         [[0.9740]],

         [[1.2101]],

         [[0.3570]],

         [[0.2600]],

         [[0.6920]],

         [[1.2641]],

         [[0.4005]],

         [[0.8563]],

         [[0.9133]],

         [[0.8862]],

         [[0.4125]],

         [[0.3939]],

         [[0.7333]],

         [[1.8460]],

         [[1.1237]],

         [[1.6750]],

         [[1.6145]],

         [[1.1031]],

         [[1.0992]],

         [[0.6235]],

         [[1.3412]],

         [[1.1457]],

         [[1.1195]],

         [[0.7569]],

         [[0.7361]],

         [[0.7995]],

         [[1.7021]],

         [[0.5470]],

         [[1.4125]],

         [[1.4078]],

         [[1.4750]],

         [[1.1136]],

         [[0.1784]],

         [[1.4374]],

         [[0.1957]],

         [[0.4324]],

         [[1.2143]],

         [[0.6173]],

         [[0.6785]],

         [[1.2819]],

         [[1.4744]],

         [[1.9414]],

         [[1.1064]],

         [[0.4062]],

         [[0.9223]],

         [[0.4108]],

         [[0.3110]],

         [[0.9191]],

         [[1.2791]],

         [[1.2254]],

         [[0.3572]],

         [[0.9373]],

         [[1.7143]],

         [[0.6263]],

         [[1.5295]],

         [[0.2024]],

         [[0.6213]],

         [[0.5846]],

         [[0.5907]],

         [[1.0082]],

         [[1.1991]],

         [[1.0248]],

         [[1.0223]],

         [[0.6894]],

         [[0.0441]],

         [[1.0225]],

         [[1.1920]],

         [[0.2592]],

         [[0.5326]],

         [[1.5008]],

         [[1.1492]],

         [[1.8549]],

         [[1.0293]],

         [[1.1905]],

         [[1.1300]],

         [[0.6930]],

         [[1.8925]],

         [[0.8223]],

         [[1.0685]],

         [[0.4496]],

         [[0.3425]],

         [[1.3118]],

         [[0.6297]],

         [[0.2179]],

         [[1.7841]],

         [[0.8223]],

         [[0.9522]],

         [[1.5563]],

         [[1.2103]],

         [[1.1195]],

         [[0.5960]],

         [[0.9722]],

         [[1.3726]],

         [[1.0165]],

         [[1.0131]],

         [[1.1399]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 288, 1, 1), torch.float32)], {'model_name': ['pt_mobilenetv3_mobilenet_v3_small_img_cls_torchhub', 'pt_mobilnetv3_mobilenetv3_small_100_img_cls_timm']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb6171cb490>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5d0a6ed40>
fw_out = tensor([[[[0.8819]],

         [[1.1539]],

         [[0.4741]],

         [[0.5177]],

         [[0.6931]],

        ...4815]],

         [[1.2842]],

         [[0.9671]],

         [[1.3005]],

         [[0.7180]],

         [[1.0329]]]])
co_out = tensor([[[[0.8819]],

         [[1.2906]],

         [[0.6118]],

         [[0.2749]],

         [[0.6144]],

        ...5960]],

         [[0.9722]],

         [[1.3726]],

         [[1.0165]],

         [[1.0131]],

         [[1.1399]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.8819]],
E           
E                    [[1.1539]],
E           
E                    [[0.4741]],
E           
E                    [[0.5177]],
E           
E                    [[0.6931]],
E           
E                    [[1.0197]],
E           
E                    [[0.8758]],
E           
E                    [[1.2821]],
E           
E                    [[0.8413]],
E           
E                    [[1.0180]],
E           
E                    [[0.7346]],
E           
E                    [[0.7874]],
E           
E                    [[0.4080]],
E           
E                    [[0.5545]],
E           
E                    [[0.6796]],
E           
E                    [[0.9042]],
E           
E                    [[1.0833]],
E           
E                    [[1.1857]],
E           
E                    [[0.5467]],
E           
E                    [[0.6679]],
E           
E                    [[1.0673]],
E           
E                    [[1.3009]],
E           
E                    [[0.7828]],
E           
E                    [[1.2598]],
E           
E                    [[0.8051]],
E           
E                    [[0.9386]],
E           
E                    [[1.3384]],
E           
E                    [[0.4218]],
E           
E                    [[0.5709]],
E           
E                    [[0.7591]],
E           
E                    [[0.6908]],
E           
E                    [[1.3177]],
E           
E                    [[0.5616]],
E           
E                    [[0.6555]],
E           
E                    [[0.5363]],
E           
E                    [[0.4174]],
E           
E                    [[0.5938]],
E           
E                    [[1.3155]],
E           
E                    [[1.1088]],
E           
E                    [[1.1280]],
E           
E                    [[0.9120]],
E           
E                    [[0.6293]],
E           
E                    [[0.9703]],
E           
E                    [[0.4188]],
E           
E                    [[0.5244]],
E           
E                    [[0.6279]],
E           
E                    [[1.2011]],
E           
E                    [[1.1788]],
E           
E                    [[0.6639]],
E           
E                    [[0.8676]],
E           
E                    [[1.2054]],
E           
E                    [[1.3827]],
E           
E                    [[1.0841]],
E           
E                    [[0.9532]],
E           
E                    [[1.2209]],
E           
E                    [[0.5913]],
E           
E                    [[0.9788]],
E           
E                    [[0.4980]],
E           
E                    [[0.5391]],
E           
E                    [[0.6274]],
E           
E                    [[1.1119]],
E           
E                    [[1.0867]],
E           
E                    [[0.5895]],
E           
E                    [[1.0367]],
E           
E                    [[1.1601]],
E           
E                    [[0.8226]],
E           
E                    [[0.9048]],
E           
E                    [[1.0015]],
E           
E                    [[1.1959]],
E           
E                    [[1.3658]],
E           
E                    [[0.5004]],
E           
E                    [[0.7024]],
E           
E                    [[1.0822]],
E           
E                    [[1.2999]],
E           
E                    [[1.3208]],
E           
E                    [[1.3268]],
E           
E                    [[0.9852]],
E           
E                    [[0.4509]],
E           
E                    [[0.9317]],
E           
E                    [[0.5729]],
E           
E                    [[0.4197]],
E           
E                    [[1.3299]],
E           
E                    [[1.2658]],
E           
E                    [[0.3869]],
E           
E                    [[0.9792]],
E           
E                    [[0.8014]],
E           
E                    [[0.8034]],
E           
E                    [[0.6568]],
E           
E                    [[1.0779]],
E           
E                    [[0.5895]],
E           
E                    [[1.0690]],
E           
E                    [[1.1385]],
E           
E                    [[1.2436]],
E           
E                    [[1.0726]],
E           
E                    [[0.3908]],
E           
E                    [[0.5613]],
E           
E                    [[1.1353]],
E           
E                    [[0.9903]],
E           
E                    [[0.4956]],
E           
E                    [[0.5978]],
E           
E                    [[1.3560]],
E           
E                    [[1.2226]],
E           
E                    [[0.6676]],
E           
E                    [[0.7598]],
E           
E                    [[0.4094]],
E           
E                    [[0.8767]],
E           
E                    [[0.5091]],
E           
E                    [[0.5000]],
E           
E                    [[0.8581]],
E           
E                    [[0.9607]],
E           
E                    [[0.6809]],
E           
E                    [[1.1824]],
E           
E                    [[0.5814]],
E           
E                    [[1.3393]],
E           
E                    [[1.2283]],
E           
E                    [[0.4640]],
E           
E                    [[0.7612]],
E           
E                    [[0.9082]],
E           
E                    [[0.9586]],
E           
E                    [[1.0042]],
E           
E                    [[1.0819]],
E           
E                    [[0.9156]],
E           
E                    [[0.6417]],
E           
E                    [[1.1223]],
E           
E                    [[0.4060]],
E           
E                    [[0.5893]],
E           
E                    [[0.7605]],
E           
E                    [[0.6421]],
E           
E                    [[0.7107]],
E           
E                    [[0.4759]],
E           
E                    [[0.7793]],
E           
E                    [[0.9925]],
E           
E                    [[0.5599]],
E           
E                    [[0.8600]],
E           
E                    [[1.2436]],
E           
E                    [[0.8343]],
E           
E                    [[0.8996]],
E           
E                    [[0.8425]],
E           
E                    [[0.9869]],
E           
E                    [[1.2036]],
E           
E                    [[1.3593]],
E           
E                    [[1.2032]],
E           
E                    [[1.3604]],
E           
E                    [[0.8495]],
E           
E                    [[0.4365]],
E           
E                    [[0.6486]],
E           
E                    [[1.2261]],
E           
E                    [[0.8824]],
E           
E                    [[0.6371]],
E           
E                    [[0.5025]],
E           
E                    [[0.4177]],
E           
E                    [[0.4637]],
E           
E                    [[0.7842]],
E           
E                    [[1.1599]],
E           
E                    [[1.1560]],
E           
E                    [[0.4034]],
E           
E                    [[1.1976]],
E           
E                    [[0.4944]],
E           
E                    [[0.7800]],
E           
E                    [[0.6829]],
E           
E                    [[0.7894]],
E           
E                    [[0.7875]],
E           
E                    [[0.4370]],
E           
E                    [[0.4539]],
E           
E                    [[0.8074]],
E           
E                    [[0.8921]],
E           
E                    [[0.6585]],
E           
E                    [[1.0740]],
E           
E                    [[0.4356]],
E           
E                    [[0.8519]],
E           
E                    [[1.3254]],
E           
E                    [[0.6817]],
E           
E                    [[1.3372]],
E           
E                    [[1.0667]],
E           
E                    [[0.4344]],
E           
E                    [[1.2020]],
E           
E                    [[0.8280]],
E           
E                    [[0.6625]],
E           
E                    [[1.2855]],
E           
E                    [[0.4816]],
E           
E                    [[0.9393]],
E           
E                    [[0.7810]],
E           
E                    [[1.2427]],
E           
E                    [[1.0252]],
E           
E                    [[1.1259]],
E           
E                    [[1.0622]],
E           
E                    [[0.7654]],
E           
E                    [[0.7805]],
E           
E                    [[0.4736]],
E           
E                    [[1.1566]],
E           
E                    [[1.2827]],
E           
E                    [[1.2278]],
E           
E                    [[0.5330]],
E           
E                    [[0.9080]],
E           
E                    [[0.5332]],
E           
E                    [[0.6104]],
E           
E                    [[0.5943]],
E           
E                    [[1.0565]],
E           
E                    [[0.5877]],
E           
E                    [[0.8748]],
E           
E                    [[0.9067]],
E           
E                    [[1.2080]],
E           
E                    [[0.5077]],
E           
E                    [[0.5424]],
E           
E                    [[0.5953]],
E           
E                    [[1.2356]],
E           
E                    [[0.7059]],
E           
E                    [[1.3074]],
E           
E                    [[1.0665]],
E           
E                    [[0.9490]],
E           
E                    [[0.8819]],
E           
E                    [[0.7868]],
E           
E                    [[0.9484]],
E           
E                    [[0.7715]],
E           
E                    [[0.8821]],
E           
E                    [[0.9495]],
E           
E                    [[0.4946]],
E           
E                    [[0.6236]],
E           
E                    [[1.2894]],
E           
E                    [[0.4799]],
E           
E                    [[0.8498]],
E           
E                    [[1.3803]],
E           
E                    [[1.0663]],
E           
E                    [[0.8998]],
E           
E                    [[0.4524]],
E           
E                    [[1.1334]],
E           
E                    [[0.5295]],
E           
E                    [[0.7437]],
E           
E                    [[0.7179]],
E           
E                    [[0.8116]],
E           
E                    [[0.8911]],
E           
E                    [[1.2981]],
E           
E                    [[0.9481]],
E           
E                    [[1.3335]],
E           
E                    [[1.1915]],
E           
E                    [[0.5696]],
E           
E                    [[1.1099]],
E           
E                    [[0.5322]],
E           
E                    [[0.6737]],
E           
E                    [[1.0327]],
E           
E                    [[1.0508]],
E           
E                    [[1.2608]],
E           
E                    [[0.7247]],
E           
E                    [[0.8865]],
E           
E                    [[1.1431]],
E           
E                    [[0.4021]],
E           
E                    [[1.2472]],
E           
E                    [[0.4722]],
E           
E                    [[0.8926]],
E           
E                    [[0.8007]],
E           
E                    [[0.6223]],
E           
E                    [[0.9517]],
E           
E                    [[1.2991]],
E           
E                    [[0.7395]],
E           
E                    [[0.5888]],
E           
E                    [[0.7007]],
E           
E                    [[0.3901]],
E           
E                    [[1.1114]],
E           
E                    [[0.6455]],
E           
E                    [[0.5520]],
E           
E                    [[0.5976]],
E           
E                    [[1.1731]],
E           
E                    [[1.1504]],
E           
E                    [[1.2694]],
E           
E                    [[1.0670]],
E           
E                    [[0.7187]],
E           
E                    [[0.7459]],
E           
E                    [[1.0334]],
E           
E                    [[1.2967]],
E           
E                    [[1.0216]],
E           
E                    [[0.6491]],
E           
E                    [[0.6506]],
E           
E                    [[0.4129]],
E           
E                    [[0.9937]],
E           
E                    [[0.6051]],
E           
E                    [[0.4399]],
E           
E                    [[1.3241]],
E           
E                    [[0.5610]],
E           
E                    [[0.8288]],
E           
E                    [[1.0289]],
E           
E                    [[0.9016]],
E           
E                    [[0.5492]],
E           
E                    [[0.4815]],
E           
E                    [[1.2842]],
E           
E                    [[0.9671]],
E           
E                    [[1.3005]],
E           
E                    [[0.7180]],
E           
E                    [[1.0329]]]]), compiled_model=tensor([[[[0.8819]],
E           
E                    [[1.2906]],
E           
E                    [[0.6118]],
E           
E                    [[0.2749]],
E           
E                    [[0.6144]],
E           
E                    [[0.9873]],
E           
E                    [[0.7578]],
E           
E                    [[1.2064]],
E           
E                    [[1.0141]],
E           
E                    [[1.6125]],
E           
E                    [[0.6422]],
E           
E                    [[0.4687]],
E           
E                    [[0.6595]],
E           
E                    [[1.1170]],
E           
E                    [[0.3022]],
E           
E                    [[1.4577]],
E           
E                    [[1.5588]],
E           
E                    [[1.4526]],
E           
E                    [[0.9559]],
E           
E                    [[0.4654]],
E           
E                    [[0.7262]],
E           
E                    [[1.8695]],
E           
E                    [[1.1443]],
E           
E                    [[1.0461]],
E           
E                    [[0.5686]],
E           
E                    [[1.1868]],
E           
E                    [[1.7802]],
E           
E                    [[0.9739]],
E           
E                    [[0.7482]],
E           
E                    [[1.1661]],
E           
E                    [[1.0003]],
E           
E                    [[1.6088]],
E           
E                    [[0.4256]],
E           
E                    [[0.4077]],
E           
E                    [[1.1362]],
E           
E                    [[0.6355]],
E           
E                    [[0.2586]],
E           
E                    [[1.2449]],
E           
E                    [[1.2727]],
E           
E                    [[1.3262]],
E           
E                    [[0.6524]],
E           
E                    [[1.1805]],
E           
E                    [[0.6235]],
E           
E                    [[0.7781]],
E           
E                    [[0.4177]],
E           
E                    [[0.3883]],
E           
E                    [[1.5366]],
E           
E                    [[1.1733]],
E           
E                    [[0.5795]],
E           
E                    [[0.9295]],
E           
E                    [[1.1412]],
E           
E                    [[1.9626]],
E           
E                    [[0.7275]],
E           
E                    [[0.8961]],
E           
E                    [[1.2745]],
E           
E                    [[0.5666]],
E           
E                    [[0.7864]],
E           
E                    [[0.6786]],
E           
E                    [[0.6635]],
E           
E                    [[1.0594]],
E           
E                    [[1.3904]],
E           
E                    [[1.5434]],
E           
E                    [[0.3507]],
E           
E                    [[1.5682]],
E           
E                    [[1.0653]],
E           
E                    [[0.9305]],
E           
E                    [[1.2032]],
E           
E                    [[1.0125]],
E           
E                    [[1.1776]],
E           
E                    [[1.7073]],
E           
E                    [[0.9749]],
E           
E                    [[0.4916]],
E           
E                    [[1.4845]],
E           
E                    [[1.7454]],
E           
E                    [[1.6429]],
E           
E                    [[1.6019]],
E           
E                    [[1.3679]],
E           
E                    [[1.0388]],
E           
E                    [[1.3856]],
E           
E                    [[0.7031]],
E           
E                    [[0.1927]],
E           
E                    [[1.4320]],
E           
E                    [[1.0929]],
E           
E                    [[0.9422]],
E           
E                    [[0.9451]],
E           
E                    [[0.9518]],
E           
E                    [[1.1292]],
E           
E                    [[0.9450]],
E           
E                    [[0.7822]],
E           
E                    [[0.3811]],
E           
E                    [[1.2687]],
E           
E                    [[0.8856]],
E           
E                    [[1.5526]],
E           
E                    [[1.3195]],
E           
E                    [[0.3105]],
E           
E                    [[0.2802]],
E           
E                    [[1.3263]],
E           
E                    [[0.8255]],
E           
E                    [[1.0898]],
E           
E                    [[1.0350]],
E           
E                    [[1.7904]],
E           
E                    [[1.5708]],
E           
E                    [[0.9769]],
E           
E                    [[0.4988]],
E           
E                    [[0.9998]],
E           
E                    [[0.8888]],
E           
E                    [[0.9132]],
E           
E                    [[1.0734]],
E           
E                    [[1.0686]],
E           
E                    [[0.7128]],
E           
E                    [[0.7715]],
E           
E                    [[1.0055]],
E           
E                    [[0.2886]],
E           
E                    [[1.8109]],
E           
E                    [[1.1538]],
E           
E                    [[0.9800]],
E           
E                    [[0.5849]],
E           
E                    [[1.2297]],
E           
E                    [[1.0393]],
E           
E                    [[1.0629]],
E           
E                    [[1.4850]],
E           
E                    [[0.5772]],
E           
E                    [[1.1739]],
E           
E                    [[1.1341]],
E           
E                    [[0.7462]],
E           
E                    [[0.4069]],
E           
E                    [[0.6140]],
E           
E                    [[0.7448]],
E           
E                    [[0.7054]],
E           
E                    [[0.3869]],
E           
E                    [[1.1642]],
E           
E                    [[1.0523]],
E           
E                    [[0.4691]],
E           
E                    [[0.9172]],
E           
E                    [[1.8058]],
E           
E                    [[0.5387]],
E           
E                    [[0.9307]],
E           
E                    [[0.8787]],
E           
E                    [[1.3446]],
E           
E                    [[1.7301]],
E           
E                    [[1.1597]],
E           
E                    [[1.2249]],
E           
E                    [[1.0094]],
E           
E                    [[0.5941]],
E           
E                    [[0.7383]],
E           
E                    [[0.7085]],
E           
E                    [[1.7106]],
E           
E                    [[0.9492]],
E           
E                    [[0.5232]],
E           
E                    [[0.4519]],
E           
E                    [[0.5850]],
E           
E                    [[0.8983]],
E           
E                    [[0.9395]],
E           
E                    [[1.3882]],
E           
E                    [[1.0947]],
E           
E                    [[0.7077]],
E           
E                    [[0.9744]],
E           
E                    [[0.9194]],
E           
E                    [[0.8728]],
E           
E                    [[1.2173]],
E           
E                    [[0.6492]],
E           
E                    [[1.3920]],
E           
E                    [[0.8690]],
E           
E                    [[0.1645]],
E           
E                    [[0.7734]],
E           
E                    [[1.4431]],
E           
E                    [[0.9427]],
E           
E                    [[1.6042]],
E           
E                    [[0.4451]],
E           
E                    [[0.7527]],
E           
E                    [[1.7713]],
E           
E                    [[0.6460]],
E           
E                    [[1.9049]],
E           
E                    [[1.4731]],
E           
E                    [[1.0465]],
E           
E                    [[1.6934]],
E           
E                    [[0.7938]],
E           
E                    [[1.1985]],
E           
E                    [[1.0119]],
E           
E                    [[1.0852]],
E           
E                    [[1.0523]],
E           
E                    [[0.6674]],
E           
E                    [[1.5031]],
E           
E                    [[1.4079]],
E           
E                    [[1.2637]],
E           
E                    [[1.5320]],
E           
E                    [[0.8442]],
E           
E                    [[0.4035]],
E           
E                    [[0.9104]],
E           
E                    [[1.2754]],
E           
E                    [[1.6776]],
E           
E                    [[1.0952]],
E           
E                    [[0.9740]],
E           
E                    [[1.2101]],
E           
E                    [[0.3570]],
E           
E                    [[0.2600]],
E           
E                    [[0.6920]],
E           
E                    [[1.2641]],
E           
E                    [[0.4005]],
E           
E                    [[0.8563]],
E           
E                    [[0.9133]],
E           
E                    [[0.8862]],
E           
E                    [[0.4125]],
E           
E                    [[0.3939]],
E           
E                    [[0.7333]],
E           
E                    [[1.8460]],
E           
E                    [[1.1237]],
E           
E                    [[1.6750]],
E           
E                    [[1.6145]],
E           
E                    [[1.1031]],
E           
E                    [[1.0992]],
E           
E                    [[0.6235]],
E           
E                    [[1.3412]],
E           
E                    [[1.1457]],
E           
E                    [[1.1195]],
E           
E                    [[0.7569]],
E           
E                    [[0.7361]],
E           
E                    [[0.7995]],
E           
E                    [[1.7021]],
E           
E                    [[0.5470]],
E           
E                    [[1.4125]],
E           
E                    [[1.4078]],
E           
E                    [[1.4750]],
E           
E                    [[1.1136]],
E           
E                    [[0.1784]],
E           
E                    [[1.4374]],
E           
E                    [[0.1957]],
E           
E                    [[0.4324]],
E           
E                    [[1.2143]],
E           
E                    [[0.6173]],
E           
E                    [[0.6785]],
E           
E                    [[1.2819]],
E           
E                    [[1.4744]],
E           
E                    [[1.9414]],
E           
E                    [[1.1064]],
E           
E                    [[0.4062]],
E           
E                    [[0.9223]],
E           
E                    [[0.4108]],
E           
E                    [[0.3110]],
E           
E                    [[0.9191]],
E           
E                    [[1.2791]],
E           
E                    [[1.2254]],
E           
E                    [[0.3572]],
E           
E                    [[0.9373]],
E           
E                    [[1.7143]],
E           
E                    [[0.6263]],
E           
E                    [[1.5295]],
E           
E                    [[0.2024]],
E           
E                    [[0.6213]],
E           
E                    [[0.5846]],
E           
E                    [[0.5907]],
E           
E                    [[1.0082]],
E           
E                    [[1.1991]],
E           
E                    [[1.0248]],
E           
E                    [[1.0223]],
E           
E                    [[0.6894]],
E           
E                    [[0.0441]],
E           
E                    [[1.0225]],
E           
E                    [[1.1920]],
E           
E                    [[0.2592]],
E           
E                    [[0.5326]],
E           
E                    [[1.5008]],
E           
E                    [[1.1492]],
E           
E                    [[1.8549]],
E           
E                    [[1.0293]],
E           
E                    [[1.1905]],
E           
E                    [[1.1300]],
E           
E                    [[0.6930]],
E           
E                    [[1.8925]],
E           
E                    [[0.8223]],
E           
E                    [[1.0685]],
E           
E                    [[0.4496]],
E           
E                    [[0.3425]],
E           
E                    [[1.3118]],
E           
E                    [[0.6297]],
E           
E                    [[0.2179]],
E           
E                    [[1.7841]],
E           
E                    [[0.8223]],
E           
E                    [[0.9522]],
E           
E                    [[1.5563]],
E           
E                    [[1.2103]],
E           
E                    [[1.1195]],
E           
E                    [[0.5960]],
E           
E                    [[0.9722]],
E           
E                    [[1.3726]],
E           
E                    [[1.0165]],
E           
E                    [[1.0131]],
E           
E                    [[1.1399]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 1280, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.6228]],

         [[0.8947]],

         [[0.2150]],

         ...,

         [[0.8623]],

         [[0.9484]],

         [[0.9666]]]]), compiled_model=tensor([[[[0.6228]],

         [[1.7609]],

         [[0.6886]],

         ...,

         [[1.4463]],

         [[1.8873]],

         [[1.5632]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 1280, 1, 1), torch.float32)], {'model_name': ['pt_mobilnetv3_mobilenetv3_large_100_img_cls_timm']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0b0be20>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5d0acea10>
fw_out = tensor([[[[0.6228]],

         [[0.8947]],

         [[0.2150]],

         ...,

         [[0.8623]],

         [[0.9484]],

         [[0.9666]]]])
co_out = tensor([[[[0.6228]],

         [[1.7609]],

         [[0.6886]],

         ...,

         [[1.4463]],

         [[1.8873]],

         [[1.5632]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.6228]],
E           
E                    [[0.8947]],
E           
E                    [[0.2150]],
E           
E                    ...,
E           
E                    [[0.8623]],
E           
E                    [[0.9484]],
E           
E                    [[0.9666]]]]), compiled_model=tensor([[[[0.6228]],
E           
E                    [[1.7609]],
E           
E                    [[0.6886]],
E           
E                    ...,
E           
E                    [[1.4463]],
E           
E                    [[1.8873]],
E           
E                    [[1.5632]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 256, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.5007]],

         [[0.7726]],

         [[0.0929]],

         [[0.1365]],

         [[0.3118]],

         [[0.6385]],

         [[0.4945]],

         [[0.9009]],

         [[0.4601]],

         [[0.6367]],

         [[0.3533]],

         [[0.4061]],

         [[0.0268]],

         [[0.1733]],

         [[0.2983]],

         [[0.5229]],

         [[0.7021]],

         [[0.8044]],

         [[0.1655]],

         [[0.2867]],

         [[0.6860]],

         [[0.9196]],

         [[0.4015]],

         [[0.8786]],

         [[0.4238]],

         [[0.5573]],

         [[0.9572]],

         [[0.0406]],

         [[0.1897]],

         [[0.3778]],

         [[0.3095]],

         [[0.9364]],

         [[0.1803]],

         [[0.2743]],

         [[0.1551]],

         [[0.0361]],

         [[0.2126]],

         [[0.9342]],

         [[0.7275]],

         [[0.7468]],

         [[0.5307]],

         [[0.2481]],

         [[0.5890]],

         [[0.0376]],

         [[0.1431]],

         [[0.2467]],

         [[0.8199]],

         [[0.7976]],

         [[0.2827]],

         [[0.4864]],

         [[0.8242]],

         [[1.0015]],

         [[0.7029]],

         [[0.5720]],

         [[0.8397]],

         [[0.2100]],

         [[0.5976]],

         [[0.1168]],

         [[0.1579]],

         [[0.2461]],

         [[0.7307]],

         [[0.7055]],

         [[0.2082]],

         [[0.6555]],

         [[0.7789]],

         [[0.4413]],

         [[0.5235]],

         [[0.6203]],

         [[0.8146]],

         [[0.9845]],

         [[0.1191]],

         [[0.3212]],

         [[0.7009]],

         [[0.9187]],

         [[0.9395]],

         [[0.9456]],

         [[0.6039]],

         [[0.0696]],

         [[0.5504]],

         [[0.1916]],

         [[0.0384]],

         [[0.9487]],

         [[0.8846]],

         [[0.0057]],

         [[0.5980]],

         [[0.4202]],

         [[0.4221]],

         [[0.2755]],

         [[0.6967]],

         [[0.2083]],

         [[0.6877]],

         [[0.7573]],

         [[0.8624]],

         [[0.6914]],

         [[0.0096]],

         [[0.1801]],

         [[0.7541]],

         [[0.6091]],

         [[0.1144]],

         [[0.2165]],

         [[0.9748]],

         [[0.8413]],

         [[0.2864]],

         [[0.3786]],

         [[0.0281]],

         [[0.4954]],

         [[0.1279]],

         [[0.1187]],

         [[0.4769]],

         [[0.5795]],

         [[0.2997]],

         [[0.8011]],

         [[0.2002]],

         [[0.9581]],

         [[0.8471]],

         [[0.0828]],

         [[0.3800]],

         [[0.5270]],

         [[0.5774]],

         [[0.6230]],

         [[0.7006]],

         [[0.5344]],

         [[0.2605]],

         [[0.7410]],

         [[0.0248]],

         [[0.2081]],

         [[0.3793]],

         [[0.2609]],

         [[0.3295]],

         [[0.0946]],

         [[0.3981]],

         [[0.6113]],

         [[0.1787]],

         [[0.4788]],

         [[0.8624]],

         [[0.4530]],

         [[0.5183]],

         [[0.4613]],

         [[0.6056]],

         [[0.8223]],

         [[0.9780]],

         [[0.8220]],

         [[0.9791]],

         [[0.4683]],

         [[0.0553]],

         [[0.2674]],

         [[0.8449]],

         [[0.5012]],

         [[0.2559]],

         [[0.1213]],

         [[0.0365]],

         [[0.0824]],

         [[0.4030]],

         [[0.7786]],

         [[0.7747]],

         [[0.0222]],

         [[0.8163]],

         [[0.1132]],

         [[0.3987]],

         [[0.3017]],

         [[0.4081]],

         [[0.4063]],

         [[0.0558]],

         [[0.0727]],

         [[0.4262]],

         [[0.5109]],

         [[0.2773]],

         [[0.6928]],

         [[0.0544]],

         [[0.4707]],

         [[0.9441]],

         [[0.3005]],

         [[0.9559]],

         [[0.6855]],

         [[0.0532]],

         [[0.8208]],

         [[0.4467]],

         [[0.2812]],

         [[0.9043]],

         [[0.1004]],

         [[0.5581]],

         [[0.3997]],

         [[0.8615]],

         [[0.6440]],

         [[0.7447]],

         [[0.6810]],

         [[0.3842]],

         [[0.3993]],

         [[0.0924]],

         [[0.7753]],

         [[0.9014]],

         [[0.8465]],

         [[0.1517]],

         [[0.5267]],

         [[0.1520]],

         [[0.2292]],

         [[0.2131]],

         [[0.6753]],

         [[0.2065]],

         [[0.4935]],

         [[0.5255]],

         [[0.8267]],

         [[0.1265]],

         [[0.1612]],

         [[0.2141]],

         [[0.8544]],

         [[0.3247]],

         [[0.9262]],

         [[0.6852]],

         [[0.5677]],

         [[0.5007]],

         [[0.4056]],

         [[0.5672]],

         [[0.3903]],

         [[0.5009]],

         [[0.5682]],

         [[0.1133]],

         [[0.2424]],

         [[0.9082]],

         [[0.0987]],

         [[0.4685]],

         [[0.9990]],

         [[0.6850]],

         [[0.5186]],

         [[0.0711]],

         [[0.7521]],

         [[0.1483]],

         [[0.3625]],

         [[0.3367]],

         [[0.4304]],

         [[0.5099]],

         [[0.9168]],

         [[0.5668]],

         [[0.9523]],

         [[0.8103]],

         [[0.1883]],

         [[0.7287]],

         [[0.1510]],

         [[0.2925]],

         [[0.6515]],

         [[0.6695]],

         [[0.8795]],

         [[0.3435]],

         [[0.5052]],

         [[0.7618]],

         [[0.0209]],

         [[0.8659]],

         [[0.0910]],

         [[0.5113]],

         [[0.4194]],

         [[0.2411]],

         [[0.5705]],

         [[0.9179]],

         [[0.3583]],

         [[0.2076]],

         [[0.3195]]]]), compiled_model=tensor([[[[0.5007]],

         [[1.0833]],

         [[0.1111]],

         [[0.7676]],

         [[0.5815]],

         [[1.3750]],

         [[0.9302]],

         [[1.7932]],

         [[1.3675]],

         [[1.3608]],

         [[0.7058]],

         [[0.7968]],

         [[0.0291]],

         [[0.6526]],

         [[1.0567]],

         [[0.7177]],

         [[1.5163]],

         [[0.8480]],

         [[1.0810]],

         [[0.2880]],

         [[0.8246]],

         [[1.6700]],

         [[0.4615]],

         [[1.3098]],

         [[0.8110]],

         [[1.1752]],

         [[1.9229]],

         [[1.0305]],

         [[0.9996]],

         [[1.1787]],

         [[1.1051]],

         [[1.5775]],

         [[0.4782]],

         [[1.2507]],

         [[1.0430]],

         [[0.3706]],

         [[0.2834]],

         [[1.5365]],

         [[1.4345]],

         [[1.0363]],

         [[0.5581]],

         [[1.1543]],

         [[0.6859]],

         [[0.6292]],

         [[1.1190]],

         [[0.7157]],

         [[0.9704]],

         [[1.6686]],

         [[0.3302]],

         [[1.4491]],

         [[1.2033]],

         [[1.7087]],

         [[1.6379]],

         [[0.8312]],

         [[0.9579]],

         [[1.0898]],

         [[0.7372]],

         [[0.5309]],

         [[0.8488]],

         [[1.1008]],

         [[1.1074]],

         [[1.3519]],

         [[0.6930]],

         [[0.7698]],

         [[1.6000]],

         [[0.6748]],

         [[1.4036]],

         [[0.7495]],

         [[0.8659]],

         [[1.5590]],

         [[0.7656]],

         [[0.5788]],

         [[0.7979]],

         [[1.6396]],

         [[1.9307]],

         [[1.5490]],

         [[0.6194]],

         [[0.2392]],

         [[1.4746]],

         [[0.3025]],

         [[0.5461]],

         [[1.5064]],

         [[1.0947]],

         [[0.2485]],

         [[0.8000]],

         [[0.8701]],

         [[1.1739]],

         [[0.3325]],

         [[1.2654]],

         [[1.1192]],

         [[1.0590]],

         [[1.4134]],

         [[1.4218]],

         [[1.6082]],

         [[0.4278]],

         [[0.7034]],

         [[1.5209]],

         [[1.0721]],

         [[0.1942]],

         [[0.8429]],

         [[1.7676]],

         [[1.3874]],

         [[1.1295]],

         [[0.8938]],

         [[0.3886]],

         [[1.0208]],

         [[0.1447]],

         [[0.1625]],

         [[1.4292]],

         [[1.1861]],

         [[1.1629]],

         [[1.4072]],

         [[1.1781]],

         [[1.2112]],

         [[1.2315]],

         [[0.7691]],

         [[1.1927]],

         [[1.2691]],

         [[1.3597]],

         [[0.6425]],

         [[1.3034]],

         [[0.6378]],

         [[0.9813]],

         [[1.1830]],

         [[0.9426]],

         [[0.3476]],

         [[1.2771]],

         [[0.5963]],

         [[0.7398]],

         [[0.1748]],

         [[0.7788]],

         [[0.7382]],

         [[1.0013]],

         [[0.7253]],

         [[1.1447]],

         [[1.3771]],

         [[1.4588]],

         [[0.5633]],

         [[1.3755]],

         [[1.0139]],

         [[1.3044]],

         [[1.7729]],

         [[1.5133]],

         [[0.5623]],

         [[0.4008]],

         [[1.2544]],

         [[1.1567]],

         [[1.2808]],

         [[0.7198]],

         [[0.3123]],

         [[0.1334]],

         [[0.1668]],

         [[1.3710]],

         [[1.5535]],

         [[1.1276]],

         [[0.6145]],

         [[0.8178]],

         [[0.4643]],

         [[0.8554]],

         [[1.0430]],

         [[0.4856]],

         [[1.2424]],

         [[0.9182]],

         [[0.2089]],

         [[0.6493]],

         [[0.7188]],

         [[0.4654]],

         [[1.0899]],

         [[0.5886]],

         [[1.0847]],

         [[1.4840]],

         [[1.1220]],

         [[1.5739]],

         [[1.4431]],

         [[0.9976]],

         [[1.1010]],

         [[0.6033]],

         [[0.3334]],

         [[0.9069]],

         [[0.2684]],

         [[1.2296]],

         [[0.7039]],

         [[1.5562]],

         [[0.8001]],

         [[1.2129]],

         [[0.6900]],

         [[0.7916]],

         [[0.9016]],

         [[0.9757]],

         [[1.7020]],

         [[1.1032]],

         [[1.4291]],

         [[0.8792]],

         [[0.9530]],

         [[0.6343]],

         [[1.0525]],

         [[0.3332]],

         [[0.7085]],

         [[0.9349]],

         [[1.1063]],

         [[0.6541]],

         [[1.4604]],

         [[1.0428]],

         [[1.0934]],

         [[0.6377]],

         [[1.1438]],

         [[1.1743]],

         [[1.0292]],

         [[1.1690]],

         [[1.3792]],

         [[1.1073]],

         [[0.8540]],

         [[0.9149]],

         [[0.6280]],

         [[1.3783]],

         [[0.5695]],

         [[0.7668]],

         [[0.7210]],

         [[1.0442]],

         [[1.0575]],

         [[1.0338]],

         [[1.4432]],

         [[1.0380]],

         [[1.3695]],

         [[0.5026]],

         [[1.0429]],

         [[0.5019]],

         [[1.0990]],

         [[0.6049]],

         [[0.5166]],

         [[0.9275]],

         [[1.1374]],

         [[1.1139]],

         [[1.7617]],

         [[1.3167]],

         [[0.7533]],

         [[1.0604]],

         [[0.7477]],

         [[0.9576]],

         [[1.1988]],

         [[1.6290]],

         [[1.7913]],

         [[1.3225]],

         [[1.0912]],

         [[1.2269]],

         [[0.5664]],

         [[1.7082]],

         [[0.3874]],

         [[1.3478]],

         [[0.5136]],

         [[0.9858]],

         [[0.9751]],

         [[1.5083]],

         [[0.7858]],

         [[0.2723]],

         [[0.9851]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 256, 1, 1), torch.float32)], {'model_name': ['pt_vovnet_ese_vovnet39b_obj_det_torchhub', 'pt_vovnet_ese_vovnet19b_dw_obj_det_torchhub', 'pt_vovnet_ese_vovnet99b_obj_det_torchhub']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0be8ee0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5d0a217e0>
fw_out = tensor([[[[0.5007]],

         [[0.7726]],

         [[0.0929]],

         [[0.1365]],

         [[0.3118]],

        ...2411]],

         [[0.5705]],

         [[0.9179]],

         [[0.3583]],

         [[0.2076]],

         [[0.3195]]]])
co_out = tensor([[[[0.5007]],

         [[1.0833]],

         [[0.1111]],

         [[0.7676]],

         [[0.5815]],

        ...9858]],

         [[0.9751]],

         [[1.5083]],

         [[0.7858]],

         [[0.2723]],

         [[0.9851]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.5007]],
E           
E                    [[0.7726]],
E           
E                    [[0.0929]],
E           
E                    [[0.1365]],
E           
E                    [[0.3118]],
E           
E                    [[0.6385]],
E           
E                    [[0.4945]],
E           
E                    [[0.9009]],
E           
E                    [[0.4601]],
E           
E                    [[0.6367]],
E           
E                    [[0.3533]],
E           
E                    [[0.4061]],
E           
E                    [[0.0268]],
E           
E                    [[0.1733]],
E           
E                    [[0.2983]],
E           
E                    [[0.5229]],
E           
E                    [[0.7021]],
E           
E                    [[0.8044]],
E           
E                    [[0.1655]],
E           
E                    [[0.2867]],
E           
E                    [[0.6860]],
E           
E                    [[0.9196]],
E           
E                    [[0.4015]],
E           
E                    [[0.8786]],
E           
E                    [[0.4238]],
E           
E                    [[0.5573]],
E           
E                    [[0.9572]],
E           
E                    [[0.0406]],
E           
E                    [[0.1897]],
E           
E                    [[0.3778]],
E           
E                    [[0.3095]],
E           
E                    [[0.9364]],
E           
E                    [[0.1803]],
E           
E                    [[0.2743]],
E           
E                    [[0.1551]],
E           
E                    [[0.0361]],
E           
E                    [[0.2126]],
E           
E                    [[0.9342]],
E           
E                    [[0.7275]],
E           
E                    [[0.7468]],
E           
E                    [[0.5307]],
E           
E                    [[0.2481]],
E           
E                    [[0.5890]],
E           
E                    [[0.0376]],
E           
E                    [[0.1431]],
E           
E                    [[0.2467]],
E           
E                    [[0.8199]],
E           
E                    [[0.7976]],
E           
E                    [[0.2827]],
E           
E                    [[0.4864]],
E           
E                    [[0.8242]],
E           
E                    [[1.0015]],
E           
E                    [[0.7029]],
E           
E                    [[0.5720]],
E           
E                    [[0.8397]],
E           
E                    [[0.2100]],
E           
E                    [[0.5976]],
E           
E                    [[0.1168]],
E           
E                    [[0.1579]],
E           
E                    [[0.2461]],
E           
E                    [[0.7307]],
E           
E                    [[0.7055]],
E           
E                    [[0.2082]],
E           
E                    [[0.6555]],
E           
E                    [[0.7789]],
E           
E                    [[0.4413]],
E           
E                    [[0.5235]],
E           
E                    [[0.6203]],
E           
E                    [[0.8146]],
E           
E                    [[0.9845]],
E           
E                    [[0.1191]],
E           
E                    [[0.3212]],
E           
E                    [[0.7009]],
E           
E                    [[0.9187]],
E           
E                    [[0.9395]],
E           
E                    [[0.9456]],
E           
E                    [[0.6039]],
E           
E                    [[0.0696]],
E           
E                    [[0.5504]],
E           
E                    [[0.1916]],
E           
E                    [[0.0384]],
E           
E                    [[0.9487]],
E           
E                    [[0.8846]],
E           
E                    [[0.0057]],
E           
E                    [[0.5980]],
E           
E                    [[0.4202]],
E           
E                    [[0.4221]],
E           
E                    [[0.2755]],
E           
E                    [[0.6967]],
E           
E                    [[0.2083]],
E           
E                    [[0.6877]],
E           
E                    [[0.7573]],
E           
E                    [[0.8624]],
E           
E                    [[0.6914]],
E           
E                    [[0.0096]],
E           
E                    [[0.1801]],
E           
E                    [[0.7541]],
E           
E                    [[0.6091]],
E           
E                    [[0.1144]],
E           
E                    [[0.2165]],
E           
E                    [[0.9748]],
E           
E                    [[0.8413]],
E           
E                    [[0.2864]],
E           
E                    [[0.3786]],
E           
E                    [[0.0281]],
E           
E                    [[0.4954]],
E           
E                    [[0.1279]],
E           
E                    [[0.1187]],
E           
E                    [[0.4769]],
E           
E                    [[0.5795]],
E           
E                    [[0.2997]],
E           
E                    [[0.8011]],
E           
E                    [[0.2002]],
E           
E                    [[0.9581]],
E           
E                    [[0.8471]],
E           
E                    [[0.0828]],
E           
E                    [[0.3800]],
E           
E                    [[0.5270]],
E           
E                    [[0.5774]],
E           
E                    [[0.6230]],
E           
E                    [[0.7006]],
E           
E                    [[0.5344]],
E           
E                    [[0.2605]],
E           
E                    [[0.7410]],
E           
E                    [[0.0248]],
E           
E                    [[0.2081]],
E           
E                    [[0.3793]],
E           
E                    [[0.2609]],
E           
E                    [[0.3295]],
E           
E                    [[0.0946]],
E           
E                    [[0.3981]],
E           
E                    [[0.6113]],
E           
E                    [[0.1787]],
E           
E                    [[0.4788]],
E           
E                    [[0.8624]],
E           
E                    [[0.4530]],
E           
E                    [[0.5183]],
E           
E                    [[0.4613]],
E           
E                    [[0.6056]],
E           
E                    [[0.8223]],
E           
E                    [[0.9780]],
E           
E                    [[0.8220]],
E           
E                    [[0.9791]],
E           
E                    [[0.4683]],
E           
E                    [[0.0553]],
E           
E                    [[0.2674]],
E           
E                    [[0.8449]],
E           
E                    [[0.5012]],
E           
E                    [[0.2559]],
E           
E                    [[0.1213]],
E           
E                    [[0.0365]],
E           
E                    [[0.0824]],
E           
E                    [[0.4030]],
E           
E                    [[0.7786]],
E           
E                    [[0.7747]],
E           
E                    [[0.0222]],
E           
E                    [[0.8163]],
E           
E                    [[0.1132]],
E           
E                    [[0.3987]],
E           
E                    [[0.3017]],
E           
E                    [[0.4081]],
E           
E                    [[0.4063]],
E           
E                    [[0.0558]],
E           
E                    [[0.0727]],
E           
E                    [[0.4262]],
E           
E                    [[0.5109]],
E           
E                    [[0.2773]],
E           
E                    [[0.6928]],
E           
E                    [[0.0544]],
E           
E                    [[0.4707]],
E           
E                    [[0.9441]],
E           
E                    [[0.3005]],
E           
E                    [[0.9559]],
E           
E                    [[0.6855]],
E           
E                    [[0.0532]],
E           
E                    [[0.8208]],
E           
E                    [[0.4467]],
E           
E                    [[0.2812]],
E           
E                    [[0.9043]],
E           
E                    [[0.1004]],
E           
E                    [[0.5581]],
E           
E                    [[0.3997]],
E           
E                    [[0.8615]],
E           
E                    [[0.6440]],
E           
E                    [[0.7447]],
E           
E                    [[0.6810]],
E           
E                    [[0.3842]],
E           
E                    [[0.3993]],
E           
E                    [[0.0924]],
E           
E                    [[0.7753]],
E           
E                    [[0.9014]],
E           
E                    [[0.8465]],
E           
E                    [[0.1517]],
E           
E                    [[0.5267]],
E           
E                    [[0.1520]],
E           
E                    [[0.2292]],
E           
E                    [[0.2131]],
E           
E                    [[0.6753]],
E           
E                    [[0.2065]],
E           
E                    [[0.4935]],
E           
E                    [[0.5255]],
E           
E                    [[0.8267]],
E           
E                    [[0.1265]],
E           
E                    [[0.1612]],
E           
E                    [[0.2141]],
E           
E                    [[0.8544]],
E           
E                    [[0.3247]],
E           
E                    [[0.9262]],
E           
E                    [[0.6852]],
E           
E                    [[0.5677]],
E           
E                    [[0.5007]],
E           
E                    [[0.4056]],
E           
E                    [[0.5672]],
E           
E                    [[0.3903]],
E           
E                    [[0.5009]],
E           
E                    [[0.5682]],
E           
E                    [[0.1133]],
E           
E                    [[0.2424]],
E           
E                    [[0.9082]],
E           
E                    [[0.0987]],
E           
E                    [[0.4685]],
E           
E                    [[0.9990]],
E           
E                    [[0.6850]],
E           
E                    [[0.5186]],
E           
E                    [[0.0711]],
E           
E                    [[0.7521]],
E           
E                    [[0.1483]],
E           
E                    [[0.3625]],
E           
E                    [[0.3367]],
E           
E                    [[0.4304]],
E           
E                    [[0.5099]],
E           
E                    [[0.9168]],
E           
E                    [[0.5668]],
E           
E                    [[0.9523]],
E           
E                    [[0.8103]],
E           
E                    [[0.1883]],
E           
E                    [[0.7287]],
E           
E                    [[0.1510]],
E           
E                    [[0.2925]],
E           
E                    [[0.6515]],
E           
E                    [[0.6695]],
E           
E                    [[0.8795]],
E           
E                    [[0.3435]],
E           
E                    [[0.5052]],
E           
E                    [[0.7618]],
E           
E                    [[0.0209]],
E           
E                    [[0.8659]],
E           
E                    [[0.0910]],
E           
E                    [[0.5113]],
E           
E                    [[0.4194]],
E           
E                    [[0.2411]],
E           
E                    [[0.5705]],
E           
E                    [[0.9179]],
E           
E                    [[0.3583]],
E           
E                    [[0.2076]],
E           
E                    [[0.3195]]]]), compiled_model=tensor([[[[0.5007]],
E           
E                    [[1.0833]],
E           
E                    [[0.1111]],
E           
E                    [[0.7676]],
E           
E                    [[0.5815]],
E           
E                    [[1.3750]],
E           
E                    [[0.9302]],
E           
E                    [[1.7932]],
E           
E                    [[1.3675]],
E           
E                    [[1.3608]],
E           
E                    [[0.7058]],
E           
E                    [[0.7968]],
E           
E                    [[0.0291]],
E           
E                    [[0.6526]],
E           
E                    [[1.0567]],
E           
E                    [[0.7177]],
E           
E                    [[1.5163]],
E           
E                    [[0.8480]],
E           
E                    [[1.0810]],
E           
E                    [[0.2880]],
E           
E                    [[0.8246]],
E           
E                    [[1.6700]],
E           
E                    [[0.4615]],
E           
E                    [[1.3098]],
E           
E                    [[0.8110]],
E           
E                    [[1.1752]],
E           
E                    [[1.9229]],
E           
E                    [[1.0305]],
E           
E                    [[0.9996]],
E           
E                    [[1.1787]],
E           
E                    [[1.1051]],
E           
E                    [[1.5775]],
E           
E                    [[0.4782]],
E           
E                    [[1.2507]],
E           
E                    [[1.0430]],
E           
E                    [[0.3706]],
E           
E                    [[0.2834]],
E           
E                    [[1.5365]],
E           
E                    [[1.4345]],
E           
E                    [[1.0363]],
E           
E                    [[0.5581]],
E           
E                    [[1.1543]],
E           
E                    [[0.6859]],
E           
E                    [[0.6292]],
E           
E                    [[1.1190]],
E           
E                    [[0.7157]],
E           
E                    [[0.9704]],
E           
E                    [[1.6686]],
E           
E                    [[0.3302]],
E           
E                    [[1.4491]],
E           
E                    [[1.2033]],
E           
E                    [[1.7087]],
E           
E                    [[1.6379]],
E           
E                    [[0.8312]],
E           
E                    [[0.9579]],
E           
E                    [[1.0898]],
E           
E                    [[0.7372]],
E           
E                    [[0.5309]],
E           
E                    [[0.8488]],
E           
E                    [[1.1008]],
E           
E                    [[1.1074]],
E           
E                    [[1.3519]],
E           
E                    [[0.6930]],
E           
E                    [[0.7698]],
E           
E                    [[1.6000]],
E           
E                    [[0.6748]],
E           
E                    [[1.4036]],
E           
E                    [[0.7495]],
E           
E                    [[0.8659]],
E           
E                    [[1.5590]],
E           
E                    [[0.7656]],
E           
E                    [[0.5788]],
E           
E                    [[0.7979]],
E           
E                    [[1.6396]],
E           
E                    [[1.9307]],
E           
E                    [[1.5490]],
E           
E                    [[0.6194]],
E           
E                    [[0.2392]],
E           
E                    [[1.4746]],
E           
E                    [[0.3025]],
E           
E                    [[0.5461]],
E           
E                    [[1.5064]],
E           
E                    [[1.0947]],
E           
E                    [[0.2485]],
E           
E                    [[0.8000]],
E           
E                    [[0.8701]],
E           
E                    [[1.1739]],
E           
E                    [[0.3325]],
E           
E                    [[1.2654]],
E           
E                    [[1.1192]],
E           
E                    [[1.0590]],
E           
E                    [[1.4134]],
E           
E                    [[1.4218]],
E           
E                    [[1.6082]],
E           
E                    [[0.4278]],
E           
E                    [[0.7034]],
E           
E                    [[1.5209]],
E           
E                    [[1.0721]],
E           
E                    [[0.1942]],
E           
E                    [[0.8429]],
E           
E                    [[1.7676]],
E           
E                    [[1.3874]],
E           
E                    [[1.1295]],
E           
E                    [[0.8938]],
E           
E                    [[0.3886]],
E           
E                    [[1.0208]],
E           
E                    [[0.1447]],
E           
E                    [[0.1625]],
E           
E                    [[1.4292]],
E           
E                    [[1.1861]],
E           
E                    [[1.1629]],
E           
E                    [[1.4072]],
E           
E                    [[1.1781]],
E           
E                    [[1.2112]],
E           
E                    [[1.2315]],
E           
E                    [[0.7691]],
E           
E                    [[1.1927]],
E           
E                    [[1.2691]],
E           
E                    [[1.3597]],
E           
E                    [[0.6425]],
E           
E                    [[1.3034]],
E           
E                    [[0.6378]],
E           
E                    [[0.9813]],
E           
E                    [[1.1830]],
E           
E                    [[0.9426]],
E           
E                    [[0.3476]],
E           
E                    [[1.2771]],
E           
E                    [[0.5963]],
E           
E                    [[0.7398]],
E           
E                    [[0.1748]],
E           
E                    [[0.7788]],
E           
E                    [[0.7382]],
E           
E                    [[1.0013]],
E           
E                    [[0.7253]],
E           
E                    [[1.1447]],
E           
E                    [[1.3771]],
E           
E                    [[1.4588]],
E           
E                    [[0.5633]],
E           
E                    [[1.3755]],
E           
E                    [[1.0139]],
E           
E                    [[1.3044]],
E           
E                    [[1.7729]],
E           
E                    [[1.5133]],
E           
E                    [[0.5623]],
E           
E                    [[0.4008]],
E           
E                    [[1.2544]],
E           
E                    [[1.1567]],
E           
E                    [[1.2808]],
E           
E                    [[0.7198]],
E           
E                    [[0.3123]],
E           
E                    [[0.1334]],
E           
E                    [[0.1668]],
E           
E                    [[1.3710]],
E           
E                    [[1.5535]],
E           
E                    [[1.1276]],
E           
E                    [[0.6145]],
E           
E                    [[0.8178]],
E           
E                    [[0.4643]],
E           
E                    [[0.8554]],
E           
E                    [[1.0430]],
E           
E                    [[0.4856]],
E           
E                    [[1.2424]],
E           
E                    [[0.9182]],
E           
E                    [[0.2089]],
E           
E                    [[0.6493]],
E           
E                    [[0.7188]],
E           
E                    [[0.4654]],
E           
E                    [[1.0899]],
E           
E                    [[0.5886]],
E           
E                    [[1.0847]],
E           
E                    [[1.4840]],
E           
E                    [[1.1220]],
E           
E                    [[1.5739]],
E           
E                    [[1.4431]],
E           
E                    [[0.9976]],
E           
E                    [[1.1010]],
E           
E                    [[0.6033]],
E           
E                    [[0.3334]],
E           
E                    [[0.9069]],
E           
E                    [[0.2684]],
E           
E                    [[1.2296]],
E           
E                    [[0.7039]],
E           
E                    [[1.5562]],
E           
E                    [[0.8001]],
E           
E                    [[1.2129]],
E           
E                    [[0.6900]],
E           
E                    [[0.7916]],
E           
E                    [[0.9016]],
E           
E                    [[0.9757]],
E           
E                    [[1.7020]],
E           
E                    [[1.1032]],
E           
E                    [[1.4291]],
E           
E                    [[0.8792]],
E           
E                    [[0.9530]],
E           
E                    [[0.6343]],
E           
E                    [[1.0525]],
E           
E                    [[0.3332]],
E           
E                    [[0.7085]],
E           
E                    [[0.9349]],
E           
E                    [[1.1063]],
E           
E                    [[0.6541]],
E           
E                    [[1.4604]],
E           
E                    [[1.0428]],
E           
E                    [[1.0934]],
E           
E                    [[0.6377]],
E           
E                    [[1.1438]],
E           
E                    [[1.1743]],
E           
E                    [[1.0292]],
E           
E                    [[1.1690]],
E           
E                    [[1.3792]],
E           
E                    [[1.1073]],
E           
E                    [[0.8540]],
E           
E                    [[0.9149]],
E           
E                    [[0.6280]],
E           
E                    [[1.3783]],
E           
E                    [[0.5695]],
E           
E                    [[0.7668]],
E           
E                    [[0.7210]],
E           
E                    [[1.0442]],
E           
E                    [[1.0575]],
E           
E                    [[1.0338]],
E           
E                    [[1.4432]],
E           
E                    [[1.0380]],
E           
E                    [[1.3695]],
E           
E                    [[0.5026]],
E           
E                    [[1.0429]],
E           
E                    [[0.5019]],
E           
E                    [[1.0990]],
E           
E                    [[0.6049]],
E           
E                    [[0.5166]],
E           
E                    [[0.9275]],
E           
E                    [[1.1374]],
E           
E                    [[1.1139]],
E           
E                    [[1.7617]],
E           
E                    [[1.3167]],
E           
E                    [[0.7533]],
E           
E                    [[1.0604]],
E           
E                    [[0.7477]],
E           
E                    [[0.9576]],
E           
E                    [[1.1988]],
E           
E                    [[1.6290]],
E           
E                    [[1.7913]],
E           
E                    [[1.3225]],
E           
E                    [[1.0912]],
E           
E                    [[1.2269]],
E           
E                    [[0.5664]],
E           
E                    [[1.7082]],
E           
E                    [[0.3874]],
E           
E                    [[1.3478]],
E           
E                    [[0.5136]],
E           
E                    [[0.9858]],
E           
E                    [[0.9751]],
E           
E                    [[1.5083]],
E           
E                    [[0.7858]],
E           
E                    [[0.2723]],
E           
E                    [[0.9851]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 512, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.8575]],

         [[1.1295]],

         [[0.4498]],

         [[0.4933]],

         [[0.6687]],

         [[0.9954]],

         [[0.8514]],

         [[1.2577]],

         [[0.8169]],

         [[0.9936]],

         [[0.7102]],

         [[0.7630]],

         [[0.3836]],

         [[0.5301]],

         [[0.6552]],

         [[0.8798]],

         [[1.0589]],

         [[1.1613]],

         [[0.5223]],

         [[0.6435]],

         [[1.0429]],

         [[1.2765]],

         [[0.7584]],

         [[1.2354]],

         [[0.7807]],

         [[0.9142]],

         [[1.3140]],

         [[0.3974]],

         [[0.5465]],

         [[0.7347]],

         [[0.6664]],

         [[1.2933]],

         [[0.5372]],

         [[0.6311]],

         [[0.5120]],

         [[0.3930]],

         [[0.5694]],

         [[1.2911]],

         [[1.0844]],

         [[1.1036]],

         [[0.8876]],

         [[0.6049]],

         [[0.9459]],

         [[0.3944]],

         [[0.5000]],

         [[0.6035]],

         [[1.1767]],

         [[1.1544]],

         [[0.6395]],

         [[0.8432]],

         [[1.1811]],

         [[1.3583]],

         [[1.0597]],

         [[0.9288]],

         [[1.1965]],

         [[0.5669]],

         [[0.9544]],

         [[0.4736]],

         [[0.5147]],

         [[0.6030]],

         [[1.0875]],

         [[1.0624]],

         [[0.5651]],

         [[1.0123]],

         [[1.1358]],

         [[0.7982]],

         [[0.8804]],

         [[0.9771]],

         [[1.1715]],

         [[1.3414]],

         [[0.4760]],

         [[0.6780]],

         [[1.0578]],

         [[1.2755]],

         [[1.2964]],

         [[1.3025]],

         [[0.9608]],

         [[0.4265]],

         [[0.9073]],

         [[0.5485]],

         [[0.3953]],

         [[1.3055]],

         [[1.2415]],

         [[0.3625]],

         [[0.9549]],

         [[0.7770]],

         [[0.7790]],

         [[0.6324]],

         [[1.0536]],

         [[0.5651]],

         [[1.0446]],

         [[1.1141]],

         [[1.2192]],

         [[1.0482]],

         [[0.3664]],

         [[0.5369]],

         [[1.1109]],

         [[0.9659]],

         [[0.4712]],

         [[0.5734]],

         [[1.3316]],

         [[1.1982]],

         [[0.6433]],

         [[0.7354]],

         [[0.3850]],

         [[0.8523]],

         [[0.4847]],

         [[0.4756]],

         [[0.8337]],

         [[0.9363]],

         [[0.6565]],

         [[1.1580]],

         [[0.5570]],

         [[1.3150]],

         [[1.2039]],

         [[0.4396]],

         [[0.7368]],

         [[0.8838]],

         [[0.9342]],

         [[0.9799]],

         [[1.0575]],

         [[0.8912]],

         [[0.6173]],

         [[1.0979]],

         [[0.3816]],

         [[0.5649]],

         [[0.7361]],

         [[0.6177]],

         [[0.6864]],

         [[0.4515]],

         [[0.7549]],

         [[0.9682]],

         [[0.5355]],

         [[0.8356]],

         [[1.2192]],

         [[0.8099]],

         [[0.8752]],

         [[0.8181]],

         [[0.9625]],

         [[1.1792]],

         [[1.3349]],

         [[1.1788]],

         [[1.3360]],

         [[0.8251]],

         [[0.4121]],

         [[0.6242]],

         [[1.2017]],

         [[0.8580]],

         [[0.6127]],

         [[0.4781]],

         [[0.3933]],

         [[0.4393]],

         [[0.7599]],

         [[1.1355]],

         [[1.1316]],

         [[0.3791]],

         [[1.1732]],

         [[0.4700]],

         [[0.7556]],

         [[0.6585]],

         [[0.7650]],

         [[0.7631]],

         [[0.4126]],

         [[0.4296]],

         [[0.7830]],

         [[0.8677]],

         [[0.6341]],

         [[1.0496]],

         [[0.4112]],

         [[0.8275]],

         [[1.3010]],

         [[0.6573]],

         [[1.3128]],

         [[1.0423]],

         [[0.4100]],

         [[1.1776]],

         [[0.8036]],

         [[0.6381]],

         [[1.2611]],

         [[0.4572]],

         [[0.9149]],

         [[0.7566]],

         [[1.2183]],

         [[1.0008]],

         [[1.1015]],

         [[1.0379]],

         [[0.7410]],

         [[0.7561]],

         [[0.4492]],

         [[1.1322]],

         [[1.2583]],

         [[1.2034]],

         [[0.5086]],

         [[0.8836]],

         [[0.5088]],

         [[0.5860]],

         [[0.5699]],

         [[1.0321]],

         [[0.5633]],

         [[0.8504]],

         [[0.8823]],

         [[1.1836]],

         [[0.4833]],

         [[0.5180]],

         [[0.5709]],

         [[1.2112]],

         [[0.6815]],

         [[1.2830]],

         [[1.0421]],

         [[0.9246]],

         [[0.8576]],

         [[0.7624]],

         [[0.9240]],

         [[0.7471]],

         [[0.8578]],

         [[0.9251]],

         [[0.4702]],

         [[0.5992]],

         [[1.2650]],

         [[0.4555]],

         [[0.8254]],

         [[1.3559]],

         [[1.0419]],

         [[0.8754]],

         [[0.4280]],

         [[1.1090]],

         [[0.5051]],

         [[0.7193]],

         [[0.6935]],

         [[0.7872]],

         [[0.8667]],

         [[1.2737]],

         [[0.9237]],

         [[1.3091]],

         [[1.1671]],

         [[0.5452]],

         [[1.0855]],

         [[0.5078]],

         [[0.6494]],

         [[1.0083]],

         [[1.0264]],

         [[1.2364]],

         [[0.7003]],

         [[0.8621]],

         [[1.1187]],

         [[0.3777]],

         [[1.2228]],

         [[0.4478]],

         [[0.8682]],

         [[0.7763]],

         [[0.5979]],

         [[0.9274]],

         [[1.2747]],

         [[0.7151]],

         [[0.5644]],

         [[0.6764]],

         [[0.3657]],

         [[1.0870]],

         [[0.6211]],

         [[0.5276]],

         [[0.5732]],

         [[1.1488]],

         [[1.1261]],

         [[1.2450]],

         [[1.0426]],

         [[0.6943]],

         [[0.7215]],

         [[1.0090]],

         [[1.2723]],

         [[0.9972]],

         [[0.6247]],

         [[0.6262]],

         [[0.3885]],

         [[0.9693]],

         [[0.5807]],

         [[0.4155]],

         [[1.2997]],

         [[0.5366]],

         [[0.8044]],

         [[1.0045]],

         [[0.8772]],

         [[0.5248]],

         [[0.4571]],

         [[1.2598]],

         [[0.9427]],

         [[1.2761]],

         [[0.6937]],

         [[1.0086]],

         [[0.7469]],

         [[0.8390]],

         [[0.5568]],

         [[1.0304]],

         [[1.0194]],

         [[0.8510]],

         [[0.7488]],

         [[0.5531]],

         [[1.2070]],

         [[0.4891]],

         [[1.0661]],

         [[0.6931]],

         [[0.6200]],

         [[0.9511]],

         [[0.6015]],

         [[0.9765]],

         [[0.9595]],

         [[0.4900]],

         [[0.9445]],

         [[1.0742]],

         [[1.0592]],

         [[0.7983]],

         [[0.4514]],

         [[0.7842]],

         [[1.0349]],

         [[0.6788]],

         [[1.0511]],

         [[1.1943]],

         [[0.6002]],

         [[0.8662]],

         [[1.0680]],

         [[0.9005]],

         [[0.9030]],

         [[0.9237]],

         [[0.4682]],

         [[0.9006]],

         [[1.2075]],

         [[1.3118]],

         [[1.1551]],

         [[0.9283]],

         [[1.0948]],

         [[0.6180]],

         [[0.4469]],

         [[0.4313]],

         [[1.3601]],

         [[1.1787]],

         [[0.5157]],

         [[1.0569]],

         [[1.2389]],

         [[1.3611]],

         [[1.2985]],

         [[1.2486]],

         [[0.7466]],

         [[0.6858]],

         [[1.2718]],

         [[1.1415]],

         [[0.5604]],

         [[1.3108]],

         [[1.1029]],

         [[1.1338]],

         [[0.5479]],

         [[1.0047]],

         [[0.6860]],

         [[1.2520]],

         [[0.7713]],

         [[1.0559]],

         [[0.9501]],

         [[1.0740]],

         [[0.6914]],

         [[1.1051]],

         [[0.5120]],

         [[0.9742]],

         [[0.5230]],

         [[0.3680]],

         [[0.4597]],

         [[1.2560]],

         [[1.1318]],

         [[1.3304]],

         [[1.2618]],

         [[0.4147]],

         [[0.5201]],

         [[0.7805]],

         [[0.5366]],

         [[1.2085]],

         [[0.4833]],

         [[0.6173]],

         [[0.3782]],

         [[0.5774]],

         [[1.2725]],

         [[1.2707]],

         [[1.2192]],

         [[1.2473]],

         [[1.3059]],

         [[0.7332]],

         [[1.0813]],

         [[1.3067]],

         [[1.0267]],

         [[1.3611]],

         [[1.1206]],

         [[1.1721]],

         [[0.6863]],

         [[1.1012]],

         [[0.9187]],

         [[0.7419]],

         [[0.5794]],

         [[0.5807]],

         [[0.4765]],

         [[1.1969]],

         [[1.2167]],

         [[0.8044]],

         [[0.5719]],

         [[1.2477]],

         [[1.1810]],

         [[0.8984]],

         [[0.6252]],

         [[1.3208]],

         [[1.0657]],

         [[0.4817]],

         [[1.3398]],

         [[1.2410]],

         [[0.6790]],

         [[1.1423]],

         [[0.5772]],

         [[0.7829]],

         [[1.2858]],

         [[0.8819]],

         [[0.5077]],

         [[0.6942]],

         [[0.7256]],

         [[0.7648]],

         [[0.9091]],

         [[1.3237]],

         [[0.8880]],

         [[0.5526]],

         [[0.8869]],

         [[1.1010]],

         [[1.1093]],

         [[0.4043]],

         [[0.7718]],

         [[0.4897]],

         [[0.6479]],

         [[1.0414]],

         [[0.5062]],

         [[1.0471]],

         [[1.2857]],

         [[0.8941]],

         [[0.5280]],

         [[0.6821]],

         [[0.9705]],

         [[0.4801]],

         [[1.1097]],

         [[0.4073]],

         [[0.3806]],

         [[0.3754]],

         [[0.7598]],

         [[1.1975]],

         [[0.3880]],

         [[1.2769]],

         [[0.6613]],

         [[1.0077]],

         [[0.8841]],

         [[0.4104]],

         [[1.2759]],

         [[1.1305]],

         [[1.3583]],

         [[1.1139]],

         [[0.5312]],

         [[1.2786]],

         [[0.8881]],

         [[1.0984]],

         [[0.4604]],

         [[0.7175]],

         [[0.3703]],

         [[0.6665]],

         [[0.9691]],

         [[0.4687]],

         [[1.0207]],

         [[1.1297]],

         [[0.9309]],

         [[0.5267]],

         [[0.4736]],

         [[0.7070]],

         [[1.0808]],

         [[1.3545]],

         [[1.1488]],

         [[0.8050]],

         [[1.0366]],

         [[0.3707]],

         [[0.4342]],

         [[1.0946]],

         [[0.5781]],

         [[1.1018]],

         [[0.5083]],

         [[0.6136]],

         [[0.4494]],

         [[1.1222]],

         [[0.8103]],

         [[1.2461]],

         [[1.1707]],

         [[1.1379]],

         [[0.8774]],

         [[0.7067]],

         [[0.7526]],

         [[0.9277]],

         [[1.1091]],

         [[0.5110]],

         [[1.2809]],

         [[0.8069]],

         [[0.4423]],

         [[0.5907]],

         [[1.3037]],

         [[1.3185]],

         [[0.3981]],

         [[1.2139]],

         [[1.1119]],

         [[1.1572]],

         [[1.2845]],

         [[0.5918]],

         [[1.0192]],

         [[1.0659]],

         [[0.7135]],

         [[1.0286]],

         [[0.7174]],

         [[1.1704]]]]), compiled_model=tensor([[[[0.8575]],

         [[1.2002]],

         [[0.1577]],

         [[0.8021]],

         [[0.4638]],

         [[0.9231]],

         [[0.9660]],

         [[1.1812]],

         [[1.0998]],

         [[1.6226]],

         [[1.0790]],

         [[0.7036]],

         [[0.1202]],

         [[0.4158]],

         [[0.6009]],

         [[1.1999]],

         [[1.4442]],

         [[1.4049]],

         [[0.6396]],

         [[0.7371]],

         [[0.9748]],

         [[1.3476]],

         [[0.6026]],

         [[1.6758]],

         [[0.9201]],

         [[1.6363]],

         [[1.0638]],

         [[0.8038]],

         [[0.7667]],

         [[1.7484]],

         [[1.2353]],

         [[2.7252]],

         [[1.5434]],

         [[1.6307]],

         [[0.8564]],

         [[0.8285]],

         [[0.2373]],

         [[1.5824]],

         [[1.7798]],

         [[1.4600]],

         [[2.0426]],

         [[1.0916]],

         [[1.6656]],

         [[0.3212]],

         [[0.9633]],

         [[1.9122]],

         [[1.2769]],

         [[2.1030]],

         [[1.0892]],

         [[1.6572]],

         [[2.7426]],

         [[2.0276]],

         [[1.6980]],

         [[1.7462]],

         [[1.9403]],

         [[1.7831]],

         [[1.0714]],

         [[1.3630]],

         [[1.1965]],

         [[0.6123]],

         [[1.0096]],

         [[2.2375]],

         [[1.6383]],

         [[1.6874]],

         [[1.3326]],

         [[1.5912]],

         [[1.2050]],

         [[1.2450]],

         [[1.9292]],

         [[1.6958]],

         [[1.0851]],

         [[1.9854]],

         [[1.0267]],

         [[2.3634]],

         [[2.1384]],

         [[2.6499]],

         [[2.2374]],

         [[0.8964]],

         [[1.5039]],

         [[1.2770]],

         [[0.7712]],

         [[1.4751]],

         [[1.7289]],

         [[1.1020]],

         [[1.7010]],

         [[1.7676]],

         [[1.1108]],

         [[1.0409]],

         [[2.2923]],

         [[0.8787]],

         [[2.0869]],

         [[1.5024]],

         [[1.7239]],

         [[2.2459]],

         [[0.7708]],

         [[0.7545]],

         [[1.5475]],

         [[2.2443]],

         [[2.0407]],

         [[1.7611]],

         [[1.5898]],

         [[1.0761]],

         [[1.7566]],

         [[0.6767]],

         [[0.5698]],

         [[1.9974]],

         [[1.2182]],

         [[0.3628]],

         [[1.2725]],

         [[1.4451]],

         [[1.4691]],

         [[1.1292]],

         [[1.4611]],

         [[2.0729]],

         [[1.9016]],

         [[1.4917]],

         [[1.7973]],

         [[2.1308]],

         [[1.0007]],

         [[1.3220]],

         [[2.2171]],

         [[1.6021]],

         [[0.4502]],

         [[1.5795]],

         [[1.7880]],

         [[1.5911]],

         [[1.5043]],

         [[1.1502]],

         [[0.7137]],

         [[1.1110]],

         [[0.5384]],

         [[0.7693]],

         [[1.6035]],

         [[1.6604]],

         [[2.0208]],

         [[1.8558]],

         [[1.6920]],

         [[1.6681]],

         [[1.8327]],

         [[1.5870]],

         [[2.1664]],

         [[2.0867]],

         [[2.3344]],

         [[1.1064]],

         [[1.3543]],

         [[0.9008]],

         [[1.8218]],

         [[1.6797]],

         [[1.1941]],

         [[0.4644]],

         [[1.3092]],

         [[0.6743]],

         [[1.1384]],

         [[0.9490]],

         [[1.5491]],

         [[0.7560]],

         [[1.8132]],

         [[0.8340]],

         [[1.5390]],

         [[1.6744]],

         [[1.8625]],

         [[0.9652]],

         [[1.4268]],

         [[1.0822]],

         [[1.7262]],

         [[2.2794]],

         [[1.7862]],

         [[1.2506]],

         [[0.4508]],

         [[1.7207]],

         [[2.0964]],

         [[1.5769]],

         [[1.6713]],

         [[0.9934]],

         [[0.1822]],

         [[0.9832]],

         [[1.8133]],

         [[1.8303]],

         [[2.0275]],

         [[0.7105]],

         [[1.3715]],

         [[0.8596]],

         [[1.7125]],

         [[1.6826]],

         [[1.2259]],

         [[1.9190]],

         [[1.2980]],

         [[0.6037]],

         [[0.7373]],

         [[1.4898]],

         [[1.3623]],

         [[1.9320]],

         [[0.7359]],

         [[1.6070]],

         [[1.6316]],

         [[1.3468]],

         [[1.7825]],

         [[2.1140]],

         [[1.1996]],

         [[1.5901]],

         [[1.1244]],

         [[1.1557]],

         [[1.0290]],

         [[0.4252]],

         [[1.4393]],

         [[1.5539]],

         [[1.8765]],

         [[1.7218]],

         [[1.8937]],

         [[1.2533]],

         [[1.2879]],

         [[1.3027]],

         [[1.5384]],

         [[2.0879]],

         [[1.5996]],

         [[1.9929]],

         [[0.9881]],

         [[1.1909]],

         [[1.5380]],

         [[1.1467]],

         [[0.7973]],

         [[1.7031]],

         [[1.6155]],

         [[1.6204]],

         [[0.7208]],

         [[2.2081]],

         [[1.1866]],

         [[1.4514]],

         [[0.9699]],

         [[1.5697]],

         [[1.6798]],

         [[1.9416]],

         [[1.7314]],

         [[2.3270]],

         [[1.9132]],

         [[1.0379]],

         [[1.6392]],

         [[0.7746]],

         [[1.6664]],

         [[1.2166]],

         [[1.4319]],

         [[1.5962]],

         [[1.3833]],

         [[1.5583]],

         [[1.7912]],

         [[1.4596]],

         [[1.8995]],

         [[1.4560]],

         [[1.0095]],

         [[1.4579]],

         [[0.7385]],

         [[1.6651]],

         [[1.5183]],

         [[0.8704]],

         [[1.1307]],

         [[1.4524]],

         [[1.1183]],

         [[2.4874]],

         [[1.5766]],

         [[0.9196]],

         [[1.2723]],

         [[1.5352]],

         [[1.7223]],

         [[2.0826]],

         [[2.3103]],

         [[2.1243]],

         [[1.6828]],

         [[1.7389]],

         [[2.1379]],

         [[1.2024]],

         [[1.9716]],

         [[0.6523]],

         [[1.3751]],

         [[1.1216]],

         [[1.2052]],

         [[1.0293]],

         [[2.4467]],

         [[0.9611]],

         [[0.7155]],

         [[1.6284]],

         [[1.2166]],

         [[0.7672]],

         [[0.7800]],

         [[1.7803]],

         [[0.6429]],

         [[1.2454]],

         [[1.1297]],

         [[1.3791]],

         [[0.7693]],

         [[0.6952]],

         [[0.2589]],

         [[1.1585]],

         [[1.3116]],

         [[0.6902]],

         [[1.0277]],

         [[0.2492]],

         [[1.7297]],

         [[1.0724]],

         [[1.2789]],

         [[0.5272]],

         [[1.0690]],

         [[1.3449]],

         [[0.7402]],

         [[1.3475]],

         [[0.6096]],

         [[0.6339]],

         [[1.2282]],

         [[0.7492]],

         [[1.3978]],

         [[0.4481]],

         [[0.1412]],

         [[1.3362]],

         [[1.0955]],

         [[0.4766]],

         [[0.8054]],

         [[1.2084]],

         [[1.1421]],

         [[1.4807]],

         [[1.3952]],

         [[1.5139]],

         [[1.5270]],

         [[1.1961]],

         [[0.8209]],

         [[1.0058]],

         [[1.7108]],

         [[1.1903]],

         [[1.3433]],

         [[0.5702]],

         [[1.5378]],

         [[0.4359]],

         [[0.6303]],

         [[0.6149]],

         [[1.8986]],

         [[1.3364]],

         [[0.7588]],

         [[1.6761]],

         [[1.1060]],

         [[1.1357]],

         [[0.9788]],

         [[1.7734]],

         [[0.8210]],

         [[0.9710]],

         [[1.3724]],

         [[1.2377]],

         [[0.7511]],

         [[1.5959]],

         [[1.3024]],

         [[1.5548]],

         [[0.6445]],

         [[0.8528]],

         [[0.6512]],

         [[1.1111]],

         [[0.7650]],

         [[1.3583]],

         [[1.4054]],

         [[1.6184]],

         [[0.4463]],

         [[1.3501]],

         [[0.5423]],

         [[0.9391]],

         [[0.3914]],

         [[0.2065]],

         [[0.1858]],

         [[1.4510]],

         [[1.1555]],

         [[1.3982]],

         [[1.0966]],

         [[1.0152]],

         [[0.9288]],

         [[0.8125]],

         [[0.7316]],

         [[1.3856]],

         [[0.2485]],

         [[0.6886]],

         [[0.2138]],

         [[1.0915]],

         [[1.2278]],

         [[1.5855]],

         [[1.3821]],

         [[1.5365]],

         [[1.7579]],

         [[0.6860]],

         [[1.4527]],

         [[1.9743]],

         [[0.6926]],

         [[1.6018]],

         [[1.6256]],

         [[1.6717]],

         [[0.6167]],

         [[0.9098]],

         [[0.8157]],

         [[0.7175]],

         [[0.6118]],

         [[0.6548]],

         [[0.5115]],

         [[1.2242]],

         [[1.1406]],

         [[1.1412]],

         [[0.9965]],

         [[1.5876]],

         [[1.6619]],

         [[1.2432]],

         [[0.3719]],

         [[1.0525]],

         [[1.6241]],

         [[0.2874]],

         [[1.3563]],

         [[0.9927]],

         [[1.1460]],

         [[1.1103]],

         [[0.6717]],

         [[0.7468]],

         [[1.8900]],

         [[1.1137]],

         [[1.0431]],

         [[0.7742]],

         [[0.5460]],

         [[1.2807]],

         [[0.8604]],

         [[1.4356]],

         [[0.9726]],

         [[1.1067]],

         [[0.8686]],

         [[0.9767]],

         [[1.5341]],

         [[0.0505]],

         [[0.9923]],

         [[0.4056]],

         [[0.7895]],

         [[1.3153]],

         [[0.6910]],

         [[0.7475]],

         [[1.5040]],

         [[0.5602]],

         [[0.9777]],

         [[0.9259]],

         [[1.2705]],

         [[0.8208]],

         [[1.2260]],

         [[0.3255]],

         [[0.9669]],

         [[0.6989]],

         [[1.0978]],

         [[1.2834]],

         [[0.5981]],

         [[1.2174]],

         [[0.8165]],

         [[0.6857]],

         [[0.8698]],

         [[0.6423]],

         [[1.7604]],

         [[1.6310]],

         [[1.6786]],

         [[1.1189]],

         [[0.7443]],

         [[1.7580]],

         [[0.8313]],

         [[0.9021]],

         [[0.8011]],

         [[0.5256]],

         [[0.7266]],

         [[0.5864]],

         [[0.9959]],

         [[0.8732]],

         [[0.7662]],

         [[1.7564]],

         [[1.1258]],

         [[0.8769]],

         [[0.3532]],

         [[1.1575]],

         [[1.0183]],

         [[1.2150]],

         [[1.4583]],

         [[0.8874]],

         [[1.6400]],

         [[0.8229]],

         [[0.2676]],

         [[1.5155]],

         [[0.3332]],

         [[1.0228]],

         [[0.2706]],

         [[0.7631]],

         [[0.9096]],

         [[1.7062]],

         [[0.5169]],

         [[1.3513]],

         [[1.6301]],

         [[1.3423]],

         [[0.5803]],

         [[1.2377]],

         [[1.0897]],

         [[1.2745]],

         [[1.6742]],

         [[0.4751]],

         [[1.4730]],

         [[1.2369]],

         [[1.0011]],

         [[1.0953]],

         [[1.5688]],

         [[1.0690]],

         [[0.9844]],

         [[1.2125]],

         [[0.7603]],

         [[1.5376]],

         [[1.4567]],

         [[0.9513]],

         [[1.0860]],

         [[1.1686]],

         [[1.2674]],

         [[1.1347]],

         [[1.3529]],

         [[1.2792]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 512, 1, 1), torch.float32)], {'model_name': ['pt_vovnet_ese_vovnet39b_obj_det_torchhub', 'pt_vovnet_ese_vovnet19b_dw_obj_det_torchhub', 'pt_vovnet_ese_vovnet99b_obj_det_torchhub']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0bea830>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5c8e9d540>
fw_out = tensor([[[[0.8575]],

         [[1.1295]],

         [[0.4498]],

         [[0.4933]],

         [[0.6687]],

        ...0192]],

         [[1.0659]],

         [[0.7135]],

         [[1.0286]],

         [[0.7174]],

         [[1.1704]]]])
co_out = tensor([[[[0.8575]],

         [[1.2002]],

         [[0.1577]],

         [[0.8021]],

         [[0.4638]],

        ...0860]],

         [[1.1686]],

         [[1.2674]],

         [[1.1347]],

         [[1.3529]],

         [[1.2792]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.8575]],
E           
E                    [[1.1295]],
E           
E                    [[0.4498]],
E           
E                    [[0.4933]],
E           
E                    [[0.6687]],
E           
E                    [[0.9954]],
E           
E                    [[0.8514]],
E           
E                    [[1.2577]],
E           
E                    [[0.8169]],
E           
E                    [[0.9936]],
E           
E                    [[0.7102]],
E           
E                    [[0.7630]],
E           
E                    [[0.3836]],
E           
E                    [[0.5301]],
E           
E                    [[0.6552]],
E           
E                    [[0.8798]],
E           
E                    [[1.0589]],
E           
E                    [[1.1613]],
E           
E                    [[0.5223]],
E           
E                    [[0.6435]],
E           
E                    [[1.0429]],
E           
E                    [[1.2765]],
E           
E                    [[0.7584]],
E           
E                    [[1.2354]],
E           
E                    [[0.7807]],
E           
E                    [[0.9142]],
E           
E                    [[1.3140]],
E           
E                    [[0.3974]],
E           
E                    [[0.5465]],
E           
E                    [[0.7347]],
E           
E                    [[0.6664]],
E           
E                    [[1.2933]],
E           
E                    [[0.5372]],
E           
E                    [[0.6311]],
E           
E                    [[0.5120]],
E           
E                    [[0.3930]],
E           
E                    [[0.5694]],
E           
E                    [[1.2911]],
E           
E                    [[1.0844]],
E           
E                    [[1.1036]],
E           
E                    [[0.8876]],
E           
E                    [[0.6049]],
E           
E                    [[0.9459]],
E           
E                    [[0.3944]],
E           
E                    [[0.5000]],
E           
E                    [[0.6035]],
E           
E                    [[1.1767]],
E           
E                    [[1.1544]],
E           
E                    [[0.6395]],
E           
E                    [[0.8432]],
E           
E                    [[1.1811]],
E           
E                    [[1.3583]],
E           
E                    [[1.0597]],
E           
E                    [[0.9288]],
E           
E                    [[1.1965]],
E           
E                    [[0.5669]],
E           
E                    [[0.9544]],
E           
E                    [[0.4736]],
E           
E                    [[0.5147]],
E           
E                    [[0.6030]],
E           
E                    [[1.0875]],
E           
E                    [[1.0624]],
E           
E                    [[0.5651]],
E           
E                    [[1.0123]],
E           
E                    [[1.1358]],
E           
E                    [[0.7982]],
E           
E                    [[0.8804]],
E           
E                    [[0.9771]],
E           
E                    [[1.1715]],
E           
E                    [[1.3414]],
E           
E                    [[0.4760]],
E           
E                    [[0.6780]],
E           
E                    [[1.0578]],
E           
E                    [[1.2755]],
E           
E                    [[1.2964]],
E           
E                    [[1.3025]],
E           
E                    [[0.9608]],
E           
E                    [[0.4265]],
E           
E                    [[0.9073]],
E           
E                    [[0.5485]],
E           
E                    [[0.3953]],
E           
E                    [[1.3055]],
E           
E                    [[1.2415]],
E           
E                    [[0.3625]],
E           
E                    [[0.9549]],
E           
E                    [[0.7770]],
E           
E                    [[0.7790]],
E           
E                    [[0.6324]],
E           
E                    [[1.0536]],
E           
E                    [[0.5651]],
E           
E                    [[1.0446]],
E           
E                    [[1.1141]],
E           
E                    [[1.2192]],
E           
E                    [[1.0482]],
E           
E                    [[0.3664]],
E           
E                    [[0.5369]],
E           
E                    [[1.1109]],
E           
E                    [[0.9659]],
E           
E                    [[0.4712]],
E           
E                    [[0.5734]],
E           
E                    [[1.3316]],
E           
E                    [[1.1982]],
E           
E                    [[0.6433]],
E           
E                    [[0.7354]],
E           
E                    [[0.3850]],
E           
E                    [[0.8523]],
E           
E                    [[0.4847]],
E           
E                    [[0.4756]],
E           
E                    [[0.8337]],
E           
E                    [[0.9363]],
E           
E                    [[0.6565]],
E           
E                    [[1.1580]],
E           
E                    [[0.5570]],
E           
E                    [[1.3150]],
E           
E                    [[1.2039]],
E           
E                    [[0.4396]],
E           
E                    [[0.7368]],
E           
E                    [[0.8838]],
E           
E                    [[0.9342]],
E           
E                    [[0.9799]],
E           
E                    [[1.0575]],
E           
E                    [[0.8912]],
E           
E                    [[0.6173]],
E           
E                    [[1.0979]],
E           
E                    [[0.3816]],
E           
E                    [[0.5649]],
E           
E                    [[0.7361]],
E           
E                    [[0.6177]],
E           
E                    [[0.6864]],
E           
E                    [[0.4515]],
E           
E                    [[0.7549]],
E           
E                    [[0.9682]],
E           
E                    [[0.5355]],
E           
E                    [[0.8356]],
E           
E                    [[1.2192]],
E           
E                    [[0.8099]],
E           
E                    [[0.8752]],
E           
E                    [[0.8181]],
E           
E                    [[0.9625]],
E           
E                    [[1.1792]],
E           
E                    [[1.3349]],
E           
E                    [[1.1788]],
E           
E                    [[1.3360]],
E           
E                    [[0.8251]],
E           
E                    [[0.4121]],
E           
E                    [[0.6242]],
E           
E                    [[1.2017]],
E           
E                    [[0.8580]],
E           
E                    [[0.6127]],
E           
E                    [[0.4781]],
E           
E                    [[0.3933]],
E           
E                    [[0.4393]],
E           
E                    [[0.7599]],
E           
E                    [[1.1355]],
E           
E                    [[1.1316]],
E           
E                    [[0.3791]],
E           
E                    [[1.1732]],
E           
E                    [[0.4700]],
E           
E                    [[0.7556]],
E           
E                    [[0.6585]],
E           
E                    [[0.7650]],
E           
E                    [[0.7631]],
E           
E                    [[0.4126]],
E           
E                    [[0.4296]],
E           
E                    [[0.7830]],
E           
E                    [[0.8677]],
E           
E                    [[0.6341]],
E           
E                    [[1.0496]],
E           
E                    [[0.4112]],
E           
E                    [[0.8275]],
E           
E                    [[1.3010]],
E           
E                    [[0.6573]],
E           
E                    [[1.3128]],
E           
E                    [[1.0423]],
E           
E                    [[0.4100]],
E           
E                    [[1.1776]],
E           
E                    [[0.8036]],
E           
E                    [[0.6381]],
E           
E                    [[1.2611]],
E           
E                    [[0.4572]],
E           
E                    [[0.9149]],
E           
E                    [[0.7566]],
E           
E                    [[1.2183]],
E           
E                    [[1.0008]],
E           
E                    [[1.1015]],
E           
E                    [[1.0379]],
E           
E                    [[0.7410]],
E           
E                    [[0.7561]],
E           
E                    [[0.4492]],
E           
E                    [[1.1322]],
E           
E                    [[1.2583]],
E           
E                    [[1.2034]],
E           
E                    [[0.5086]],
E           
E                    [[0.8836]],
E           
E                    [[0.5088]],
E           
E                    [[0.5860]],
E           
E                    [[0.5699]],
E           
E                    [[1.0321]],
E           
E                    [[0.5633]],
E           
E                    [[0.8504]],
E           
E                    [[0.8823]],
E           
E                    [[1.1836]],
E           
E                    [[0.4833]],
E           
E                    [[0.5180]],
E           
E                    [[0.5709]],
E           
E                    [[1.2112]],
E           
E                    [[0.6815]],
E           
E                    [[1.2830]],
E           
E                    [[1.0421]],
E           
E                    [[0.9246]],
E           
E                    [[0.8576]],
E           
E                    [[0.7624]],
E           
E                    [[0.9240]],
E           
E                    [[0.7471]],
E           
E                    [[0.8578]],
E           
E                    [[0.9251]],
E           
E                    [[0.4702]],
E           
E                    [[0.5992]],
E           
E                    [[1.2650]],
E           
E                    [[0.4555]],
E           
E                    [[0.8254]],
E           
E                    [[1.3559]],
E           
E                    [[1.0419]],
E           
E                    [[0.8754]],
E           
E                    [[0.4280]],
E           
E                    [[1.1090]],
E           
E                    [[0.5051]],
E           
E                    [[0.7193]],
E           
E                    [[0.6935]],
E           
E                    [[0.7872]],
E           
E                    [[0.8667]],
E           
E                    [[1.2737]],
E           
E                    [[0.9237]],
E           
E                    [[1.3091]],
E           
E                    [[1.1671]],
E           
E                    [[0.5452]],
E           
E                    [[1.0855]],
E           
E                    [[0.5078]],
E           
E                    [[0.6494]],
E           
E                    [[1.0083]],
E           
E                    [[1.0264]],
E           
E                    [[1.2364]],
E           
E                    [[0.7003]],
E           
E                    [[0.8621]],
E           
E                    [[1.1187]],
E           
E                    [[0.3777]],
E           
E                    [[1.2228]],
E           
E                    [[0.4478]],
E           
E                    [[0.8682]],
E           
E                    [[0.7763]],
E           
E                    [[0.5979]],
E           
E                    [[0.9274]],
E           
E                    [[1.2747]],
E           
E                    [[0.7151]],
E           
E                    [[0.5644]],
E           
E                    [[0.6764]],
E           
E                    [[0.3657]],
E           
E                    [[1.0870]],
E           
E                    [[0.6211]],
E           
E                    [[0.5276]],
E           
E                    [[0.5732]],
E           
E                    [[1.1488]],
E           
E                    [[1.1261]],
E           
E                    [[1.2450]],
E           
E                    [[1.0426]],
E           
E                    [[0.6943]],
E           
E                    [[0.7215]],
E           
E                    [[1.0090]],
E           
E                    [[1.2723]],
E           
E                    [[0.9972]],
E           
E                    [[0.6247]],
E           
E                    [[0.6262]],
E           
E                    [[0.3885]],
E           
E                    [[0.9693]],
E           
E                    [[0.5807]],
E           
E                    [[0.4155]],
E           
E                    [[1.2997]],
E           
E                    [[0.5366]],
E           
E                    [[0.8044]],
E           
E                    [[1.0045]],
E           
E                    [[0.8772]],
E           
E                    [[0.5248]],
E           
E                    [[0.4571]],
E           
E                    [[1.2598]],
E           
E                    [[0.9427]],
E           
E                    [[1.2761]],
E           
E                    [[0.6937]],
E           
E                    [[1.0086]],
E           
E                    [[0.7469]],
E           
E                    [[0.8390]],
E           
E                    [[0.5568]],
E           
E                    [[1.0304]],
E           
E                    [[1.0194]],
E           
E                    [[0.8510]],
E           
E                    [[0.7488]],
E           
E                    [[0.5531]],
E           
E                    [[1.2070]],
E           
E                    [[0.4891]],
E           
E                    [[1.0661]],
E           
E                    [[0.6931]],
E           
E                    [[0.6200]],
E           
E                    [[0.9511]],
E           
E                    [[0.6015]],
E           
E                    [[0.9765]],
E           
E                    [[0.9595]],
E           
E                    [[0.4900]],
E           
E                    [[0.9445]],
E           
E                    [[1.0742]],
E           
E                    [[1.0592]],
E           
E                    [[0.7983]],
E           
E                    [[0.4514]],
E           
E                    [[0.7842]],
E           
E                    [[1.0349]],
E           
E                    [[0.6788]],
E           
E                    [[1.0511]],
E           
E                    [[1.1943]],
E           
E                    [[0.6002]],
E           
E                    [[0.8662]],
E           
E                    [[1.0680]],
E           
E                    [[0.9005]],
E           
E                    [[0.9030]],
E           
E                    [[0.9237]],
E           
E                    [[0.4682]],
E           
E                    [[0.9006]],
E           
E                    [[1.2075]],
E           
E                    [[1.3118]],
E           
E                    [[1.1551]],
E           
E                    [[0.9283]],
E           
E                    [[1.0948]],
E           
E                    [[0.6180]],
E           
E                    [[0.4469]],
E           
E                    [[0.4313]],
E           
E                    [[1.3601]],
E           
E                    [[1.1787]],
E           
E                    [[0.5157]],
E           
E                    [[1.0569]],
E           
E                    [[1.2389]],
E           
E                    [[1.3611]],
E           
E                    [[1.2985]],
E           
E                    [[1.2486]],
E           
E                    [[0.7466]],
E           
E                    [[0.6858]],
E           
E                    [[1.2718]],
E           
E                    [[1.1415]],
E           
E                    [[0.5604]],
E           
E                    [[1.3108]],
E           
E                    [[1.1029]],
E           
E                    [[1.1338]],
E           
E                    [[0.5479]],
E           
E                    [[1.0047]],
E           
E                    [[0.6860]],
E           
E                    [[1.2520]],
E           
E                    [[0.7713]],
E           
E                    [[1.0559]],
E           
E                    [[0.9501]],
E           
E                    [[1.0740]],
E           
E                    [[0.6914]],
E           
E                    [[1.1051]],
E           
E                    [[0.5120]],
E           
E                    [[0.9742]],
E           
E                    [[0.5230]],
E           
E                    [[0.3680]],
E           
E                    [[0.4597]],
E           
E                    [[1.2560]],
E           
E                    [[1.1318]],
E           
E                    [[1.3304]],
E           
E                    [[1.2618]],
E           
E                    [[0.4147]],
E           
E                    [[0.5201]],
E           
E                    [[0.7805]],
E           
E                    [[0.5366]],
E           
E                    [[1.2085]],
E           
E                    [[0.4833]],
E           
E                    [[0.6173]],
E           
E                    [[0.3782]],
E           
E                    [[0.5774]],
E           
E                    [[1.2725]],
E           
E                    [[1.2707]],
E           
E                    [[1.2192]],
E           
E                    [[1.2473]],
E           
E                    [[1.3059]],
E           
E                    [[0.7332]],
E           
E                    [[1.0813]],
E           
E                    [[1.3067]],
E           
E                    [[1.0267]],
E           
E                    [[1.3611]],
E           
E                    [[1.1206]],
E           
E                    [[1.1721]],
E           
E                    [[0.6863]],
E           
E                    [[1.1012]],
E           
E                    [[0.9187]],
E           
E                    [[0.7419]],
E           
E                    [[0.5794]],
E           
E                    [[0.5807]],
E           
E                    [[0.4765]],
E           
E                    [[1.1969]],
E           
E                    [[1.2167]],
E           
E                    [[0.8044]],
E           
E                    [[0.5719]],
E           
E                    [[1.2477]],
E           
E                    [[1.1810]],
E           
E                    [[0.8984]],
E           
E                    [[0.6252]],
E           
E                    [[1.3208]],
E           
E                    [[1.0657]],
E           
E                    [[0.4817]],
E           
E                    [[1.3398]],
E           
E                    [[1.2410]],
E           
E                    [[0.6790]],
E           
E                    [[1.1423]],
E           
E                    [[0.5772]],
E           
E                    [[0.7829]],
E           
E                    [[1.2858]],
E           
E                    [[0.8819]],
E           
E                    [[0.5077]],
E           
E                    [[0.6942]],
E           
E                    [[0.7256]],
E           
E                    [[0.7648]],
E           
E                    [[0.9091]],
E           
E                    [[1.3237]],
E           
E                    [[0.8880]],
E           
E                    [[0.5526]],
E           
E                    [[0.8869]],
E           
E                    [[1.1010]],
E           
E                    [[1.1093]],
E           
E                    [[0.4043]],
E           
E                    [[0.7718]],
E           
E                    [[0.4897]],
E           
E                    [[0.6479]],
E           
E                    [[1.0414]],
E           
E                    [[0.5062]],
E           
E                    [[1.0471]],
E           
E                    [[1.2857]],
E           
E                    [[0.8941]],
E           
E                    [[0.5280]],
E           
E                    [[0.6821]],
E           
E                    [[0.9705]],
E           
E                    [[0.4801]],
E           
E                    [[1.1097]],
E           
E                    [[0.4073]],
E           
E                    [[0.3806]],
E           
E                    [[0.3754]],
E           
E                    [[0.7598]],
E           
E                    [[1.1975]],
E           
E                    [[0.3880]],
E           
E                    [[1.2769]],
E           
E                    [[0.6613]],
E           
E                    [[1.0077]],
E           
E                    [[0.8841]],
E           
E                    [[0.4104]],
E           
E                    [[1.2759]],
E           
E                    [[1.1305]],
E           
E                    [[1.3583]],
E           
E                    [[1.1139]],
E           
E                    [[0.5312]],
E           
E                    [[1.2786]],
E           
E                    [[0.8881]],
E           
E                    [[1.0984]],
E           
E                    [[0.4604]],
E           
E                    [[0.7175]],
E           
E                    [[0.3703]],
E           
E                    [[0.6665]],
E           
E                    [[0.9691]],
E           
E                    [[0.4687]],
E           
E                    [[1.0207]],
E           
E                    [[1.1297]],
E           
E                    [[0.9309]],
E           
E                    [[0.5267]],
E           
E                    [[0.4736]],
E           
E                    [[0.7070]],
E           
E                    [[1.0808]],
E           
E                    [[1.3545]],
E           
E                    [[1.1488]],
E           
E                    [[0.8050]],
E           
E                    [[1.0366]],
E           
E                    [[0.3707]],
E           
E                    [[0.4342]],
E           
E                    [[1.0946]],
E           
E                    [[0.5781]],
E           
E                    [[1.1018]],
E           
E                    [[0.5083]],
E           
E                    [[0.6136]],
E           
E                    [[0.4494]],
E           
E                    [[1.1222]],
E           
E                    [[0.8103]],
E           
E                    [[1.2461]],
E           
E                    [[1.1707]],
E           
E                    [[1.1379]],
E           
E                    [[0.8774]],
E           
E                    [[0.7067]],
E           
E                    [[0.7526]],
E           
E                    [[0.9277]],
E           
E                    [[1.1091]],
E           
E                    [[0.5110]],
E           
E                    [[1.2809]],
E           
E                    [[0.8069]],
E           
E                    [[0.4423]],
E           
E                    [[0.5907]],
E           
E                    [[1.3037]],
E           
E                    [[1.3185]],
E           
E                    [[0.3981]],
E           
E                    [[1.2139]],
E           
E                    [[1.1119]],
E           
E                    [[1.1572]],
E           
E                    [[1.2845]],
E           
E                    [[0.5918]],
E           
E                    [[1.0192]],
E           
E                    [[1.0659]],
E           
E                    [[0.7135]],
E           
E                    [[1.0286]],
E           
E                    [[0.7174]],
E           
E                    [[1.1704]]]]), compiled_model=tensor([[[[0.8575]],
E           
E                    [[1.2002]],
E           
E                    [[0.1577]],
E           
E                    [[0.8021]],
E           
E                    [[0.4638]],
E           
E                    [[0.9231]],
E           
E                    [[0.9660]],
E           
E                    [[1.1812]],
E           
E                    [[1.0998]],
E           
E                    [[1.6226]],
E           
E                    [[1.0790]],
E           
E                    [[0.7036]],
E           
E                    [[0.1202]],
E           
E                    [[0.4158]],
E           
E                    [[0.6009]],
E           
E                    [[1.1999]],
E           
E                    [[1.4442]],
E           
E                    [[1.4049]],
E           
E                    [[0.6396]],
E           
E                    [[0.7371]],
E           
E                    [[0.9748]],
E           
E                    [[1.3476]],
E           
E                    [[0.6026]],
E           
E                    [[1.6758]],
E           
E                    [[0.9201]],
E           
E                    [[1.6363]],
E           
E                    [[1.0638]],
E           
E                    [[0.8038]],
E           
E                    [[0.7667]],
E           
E                    [[1.7484]],
E           
E                    [[1.2353]],
E           
E                    [[2.7252]],
E           
E                    [[1.5434]],
E           
E                    [[1.6307]],
E           
E                    [[0.8564]],
E           
E                    [[0.8285]],
E           
E                    [[0.2373]],
E           
E                    [[1.5824]],
E           
E                    [[1.7798]],
E           
E                    [[1.4600]],
E           
E                    [[2.0426]],
E           
E                    [[1.0916]],
E           
E                    [[1.6656]],
E           
E                    [[0.3212]],
E           
E                    [[0.9633]],
E           
E                    [[1.9122]],
E           
E                    [[1.2769]],
E           
E                    [[2.1030]],
E           
E                    [[1.0892]],
E           
E                    [[1.6572]],
E           
E                    [[2.7426]],
E           
E                    [[2.0276]],
E           
E                    [[1.6980]],
E           
E                    [[1.7462]],
E           
E                    [[1.9403]],
E           
E                    [[1.7831]],
E           
E                    [[1.0714]],
E           
E                    [[1.3630]],
E           
E                    [[1.1965]],
E           
E                    [[0.6123]],
E           
E                    [[1.0096]],
E           
E                    [[2.2375]],
E           
E                    [[1.6383]],
E           
E                    [[1.6874]],
E           
E                    [[1.3326]],
E           
E                    [[1.5912]],
E           
E                    [[1.2050]],
E           
E                    [[1.2450]],
E           
E                    [[1.9292]],
E           
E                    [[1.6958]],
E           
E                    [[1.0851]],
E           
E                    [[1.9854]],
E           
E                    [[1.0267]],
E           
E                    [[2.3634]],
E           
E                    [[2.1384]],
E           
E                    [[2.6499]],
E           
E                    [[2.2374]],
E           
E                    [[0.8964]],
E           
E                    [[1.5039]],
E           
E                    [[1.2770]],
E           
E                    [[0.7712]],
E           
E                    [[1.4751]],
E           
E                    [[1.7289]],
E           
E                    [[1.1020]],
E           
E                    [[1.7010]],
E           
E                    [[1.7676]],
E           
E                    [[1.1108]],
E           
E                    [[1.0409]],
E           
E                    [[2.2923]],
E           
E                    [[0.8787]],
E           
E                    [[2.0869]],
E           
E                    [[1.5024]],
E           
E                    [[1.7239]],
E           
E                    [[2.2459]],
E           
E                    [[0.7708]],
E           
E                    [[0.7545]],
E           
E                    [[1.5475]],
E           
E                    [[2.2443]],
E           
E                    [[2.0407]],
E           
E                    [[1.7611]],
E           
E                    [[1.5898]],
E           
E                    [[1.0761]],
E           
E                    [[1.7566]],
E           
E                    [[0.6767]],
E           
E                    [[0.5698]],
E           
E                    [[1.9974]],
E           
E                    [[1.2182]],
E           
E                    [[0.3628]],
E           
E                    [[1.2725]],
E           
E                    [[1.4451]],
E           
E                    [[1.4691]],
E           
E                    [[1.1292]],
E           
E                    [[1.4611]],
E           
E                    [[2.0729]],
E           
E                    [[1.9016]],
E           
E                    [[1.4917]],
E           
E                    [[1.7973]],
E           
E                    [[2.1308]],
E           
E                    [[1.0007]],
E           
E                    [[1.3220]],
E           
E                    [[2.2171]],
E           
E                    [[1.6021]],
E           
E                    [[0.4502]],
E           
E                    [[1.5795]],
E           
E                    [[1.7880]],
E           
E                    [[1.5911]],
E           
E                    [[1.5043]],
E           
E                    [[1.1502]],
E           
E                    [[0.7137]],
E           
E                    [[1.1110]],
E           
E                    [[0.5384]],
E           
E                    [[0.7693]],
E           
E                    [[1.6035]],
E           
E                    [[1.6604]],
E           
E                    [[2.0208]],
E           
E                    [[1.8558]],
E           
E                    [[1.6920]],
E           
E                    [[1.6681]],
E           
E                    [[1.8327]],
E           
E                    [[1.5870]],
E           
E                    [[2.1664]],
E           
E                    [[2.0867]],
E           
E                    [[2.3344]],
E           
E                    [[1.1064]],
E           
E                    [[1.3543]],
E           
E                    [[0.9008]],
E           
E                    [[1.8218]],
E           
E                    [[1.6797]],
E           
E                    [[1.1941]],
E           
E                    [[0.4644]],
E           
E                    [[1.3092]],
E           
E                    [[0.6743]],
E           
E                    [[1.1384]],
E           
E                    [[0.9490]],
E           
E                    [[1.5491]],
E           
E                    [[0.7560]],
E           
E                    [[1.8132]],
E           
E                    [[0.8340]],
E           
E                    [[1.5390]],
E           
E                    [[1.6744]],
E           
E                    [[1.8625]],
E           
E                    [[0.9652]],
E           
E                    [[1.4268]],
E           
E                    [[1.0822]],
E           
E                    [[1.7262]],
E           
E                    [[2.2794]],
E           
E                    [[1.7862]],
E           
E                    [[1.2506]],
E           
E                    [[0.4508]],
E           
E                    [[1.7207]],
E           
E                    [[2.0964]],
E           
E                    [[1.5769]],
E           
E                    [[1.6713]],
E           
E                    [[0.9934]],
E           
E                    [[0.1822]],
E           
E                    [[0.9832]],
E           
E                    [[1.8133]],
E           
E                    [[1.8303]],
E           
E                    [[2.0275]],
E           
E                    [[0.7105]],
E           
E                    [[1.3715]],
E           
E                    [[0.8596]],
E           
E                    [[1.7125]],
E           
E                    [[1.6826]],
E           
E                    [[1.2259]],
E           
E                    [[1.9190]],
E           
E                    [[1.2980]],
E           
E                    [[0.6037]],
E           
E                    [[0.7373]],
E           
E                    [[1.4898]],
E           
E                    [[1.3623]],
E           
E                    [[1.9320]],
E           
E                    [[0.7359]],
E           
E                    [[1.6070]],
E           
E                    [[1.6316]],
E           
E                    [[1.3468]],
E           
E                    [[1.7825]],
E           
E                    [[2.1140]],
E           
E                    [[1.1996]],
E           
E                    [[1.5901]],
E           
E                    [[1.1244]],
E           
E                    [[1.1557]],
E           
E                    [[1.0290]],
E           
E                    [[0.4252]],
E           
E                    [[1.4393]],
E           
E                    [[1.5539]],
E           
E                    [[1.8765]],
E           
E                    [[1.7218]],
E           
E                    [[1.8937]],
E           
E                    [[1.2533]],
E           
E                    [[1.2879]],
E           
E                    [[1.3027]],
E           
E                    [[1.5384]],
E           
E                    [[2.0879]],
E           
E                    [[1.5996]],
E           
E                    [[1.9929]],
E           
E                    [[0.9881]],
E           
E                    [[1.1909]],
E           
E                    [[1.5380]],
E           
E                    [[1.1467]],
E           
E                    [[0.7973]],
E           
E                    [[1.7031]],
E           
E                    [[1.6155]],
E           
E                    [[1.6204]],
E           
E                    [[0.7208]],
E           
E                    [[2.2081]],
E           
E                    [[1.1866]],
E           
E                    [[1.4514]],
E           
E                    [[0.9699]],
E           
E                    [[1.5697]],
E           
E                    [[1.6798]],
E           
E                    [[1.9416]],
E           
E                    [[1.7314]],
E           
E                    [[2.3270]],
E           
E                    [[1.9132]],
E           
E                    [[1.0379]],
E           
E                    [[1.6392]],
E           
E                    [[0.7746]],
E           
E                    [[1.6664]],
E           
E                    [[1.2166]],
E           
E                    [[1.4319]],
E           
E                    [[1.5962]],
E           
E                    [[1.3833]],
E           
E                    [[1.5583]],
E           
E                    [[1.7912]],
E           
E                    [[1.4596]],
E           
E                    [[1.8995]],
E           
E                    [[1.4560]],
E           
E                    [[1.0095]],
E           
E                    [[1.4579]],
E           
E                    [[0.7385]],
E           
E                    [[1.6651]],
E           
E                    [[1.5183]],
E           
E                    [[0.8704]],
E           
E                    [[1.1307]],
E           
E                    [[1.4524]],
E           
E                    [[1.1183]],
E           
E                    [[2.4874]],
E           
E                    [[1.5766]],
E           
E                    [[0.9196]],
E           
E                    [[1.2723]],
E           
E                    [[1.5352]],
E           
E                    [[1.7223]],
E           
E                    [[2.0826]],
E           
E                    [[2.3103]],
E           
E                    [[2.1243]],
E           
E                    [[1.6828]],
E           
E                    [[1.7389]],
E           
E                    [[2.1379]],
E           
E                    [[1.2024]],
E           
E                    [[1.9716]],
E           
E                    [[0.6523]],
E           
E                    [[1.3751]],
E           
E                    [[1.1216]],
E           
E                    [[1.2052]],
E           
E                    [[1.0293]],
E           
E                    [[2.4467]],
E           
E                    [[0.9611]],
E           
E                    [[0.7155]],
E           
E                    [[1.6284]],
E           
E                    [[1.2166]],
E           
E                    [[0.7672]],
E           
E                    [[0.7800]],
E           
E                    [[1.7803]],
E           
E                    [[0.6429]],
E           
E                    [[1.2454]],
E           
E                    [[1.1297]],
E           
E                    [[1.3791]],
E           
E                    [[0.7693]],
E           
E                    [[0.6952]],
E           
E                    [[0.2589]],
E           
E                    [[1.1585]],
E           
E                    [[1.3116]],
E           
E                    [[0.6902]],
E           
E                    [[1.0277]],
E           
E                    [[0.2492]],
E           
E                    [[1.7297]],
E           
E                    [[1.0724]],
E           
E                    [[1.2789]],
E           
E                    [[0.5272]],
E           
E                    [[1.0690]],
E           
E                    [[1.3449]],
E           
E                    [[0.7402]],
E           
E                    [[1.3475]],
E           
E                    [[0.6096]],
E           
E                    [[0.6339]],
E           
E                    [[1.2282]],
E           
E                    [[0.7492]],
E           
E                    [[1.3978]],
E           
E                    [[0.4481]],
E           
E                    [[0.1412]],
E           
E                    [[1.3362]],
E           
E                    [[1.0955]],
E           
E                    [[0.4766]],
E           
E                    [[0.8054]],
E           
E                    [[1.2084]],
E           
E                    [[1.1421]],
E           
E                    [[1.4807]],
E           
E                    [[1.3952]],
E           
E                    [[1.5139]],
E           
E                    [[1.5270]],
E           
E                    [[1.1961]],
E           
E                    [[0.8209]],
E           
E                    [[1.0058]],
E           
E                    [[1.7108]],
E           
E                    [[1.1903]],
E           
E                    [[1.3433]],
E           
E                    [[0.5702]],
E           
E                    [[1.5378]],
E           
E                    [[0.4359]],
E           
E                    [[0.6303]],
E           
E                    [[0.6149]],
E           
E                    [[1.8986]],
E           
E                    [[1.3364]],
E           
E                    [[0.7588]],
E           
E                    [[1.6761]],
E           
E                    [[1.1060]],
E           
E                    [[1.1357]],
E           
E                    [[0.9788]],
E           
E                    [[1.7734]],
E           
E                    [[0.8210]],
E           
E                    [[0.9710]],
E           
E                    [[1.3724]],
E           
E                    [[1.2377]],
E           
E                    [[0.7511]],
E           
E                    [[1.5959]],
E           
E                    [[1.3024]],
E           
E                    [[1.5548]],
E           
E                    [[0.6445]],
E           
E                    [[0.8528]],
E           
E                    [[0.6512]],
E           
E                    [[1.1111]],
E           
E                    [[0.7650]],
E           
E                    [[1.3583]],
E           
E                    [[1.4054]],
E           
E                    [[1.6184]],
E           
E                    [[0.4463]],
E           
E                    [[1.3501]],
E           
E                    [[0.5423]],
E           
E                    [[0.9391]],
E           
E                    [[0.3914]],
E           
E                    [[0.2065]],
E           
E                    [[0.1858]],
E           
E                    [[1.4510]],
E           
E                    [[1.1555]],
E           
E                    [[1.3982]],
E           
E                    [[1.0966]],
E           
E                    [[1.0152]],
E           
E                    [[0.9288]],
E           
E                    [[0.8125]],
E           
E                    [[0.7316]],
E           
E                    [[1.3856]],
E           
E                    [[0.2485]],
E           
E                    [[0.6886]],
E           
E                    [[0.2138]],
E           
E                    [[1.0915]],
E           
E                    [[1.2278]],
E           
E                    [[1.5855]],
E           
E                    [[1.3821]],
E           
E                    [[1.5365]],
E           
E                    [[1.7579]],
E           
E                    [[0.6860]],
E           
E                    [[1.4527]],
E           
E                    [[1.9743]],
E           
E                    [[0.6926]],
E           
E                    [[1.6018]],
E           
E                    [[1.6256]],
E           
E                    [[1.6717]],
E           
E                    [[0.6167]],
E           
E                    [[0.9098]],
E           
E                    [[0.8157]],
E           
E                    [[0.7175]],
E           
E                    [[0.6118]],
E           
E                    [[0.6548]],
E           
E                    [[0.5115]],
E           
E                    [[1.2242]],
E           
E                    [[1.1406]],
E           
E                    [[1.1412]],
E           
E                    [[0.9965]],
E           
E                    [[1.5876]],
E           
E                    [[1.6619]],
E           
E                    [[1.2432]],
E           
E                    [[0.3719]],
E           
E                    [[1.0525]],
E           
E                    [[1.6241]],
E           
E                    [[0.2874]],
E           
E                    [[1.3563]],
E           
E                    [[0.9927]],
E           
E                    [[1.1460]],
E           
E                    [[1.1103]],
E           
E                    [[0.6717]],
E           
E                    [[0.7468]],
E           
E                    [[1.8900]],
E           
E                    [[1.1137]],
E           
E                    [[1.0431]],
E           
E                    [[0.7742]],
E           
E                    [[0.5460]],
E           
E                    [[1.2807]],
E           
E                    [[0.8604]],
E           
E                    [[1.4356]],
E           
E                    [[0.9726]],
E           
E                    [[1.1067]],
E           
E                    [[0.8686]],
E           
E                    [[0.9767]],
E           
E                    [[1.5341]],
E           
E                    [[0.0505]],
E           
E                    [[0.9923]],
E           
E                    [[0.4056]],
E           
E                    [[0.7895]],
E           
E                    [[1.3153]],
E           
E                    [[0.6910]],
E           
E                    [[0.7475]],
E           
E                    [[1.5040]],
E           
E                    [[0.5602]],
E           
E                    [[0.9777]],
E           
E                    [[0.9259]],
E           
E                    [[1.2705]],
E           
E                    [[0.8208]],
E           
E                    [[1.2260]],
E           
E                    [[0.3255]],
E           
E                    [[0.9669]],
E           
E                    [[0.6989]],
E           
E                    [[1.0978]],
E           
E                    [[1.2834]],
E           
E                    [[0.5981]],
E           
E                    [[1.2174]],
E           
E                    [[0.8165]],
E           
E                    [[0.6857]],
E           
E                    [[0.8698]],
E           
E                    [[0.6423]],
E           
E                    [[1.7604]],
E           
E                    [[1.6310]],
E           
E                    [[1.6786]],
E           
E                    [[1.1189]],
E           
E                    [[0.7443]],
E           
E                    [[1.7580]],
E           
E                    [[0.8313]],
E           
E                    [[0.9021]],
E           
E                    [[0.8011]],
E           
E                    [[0.5256]],
E           
E                    [[0.7266]],
E           
E                    [[0.5864]],
E           
E                    [[0.9959]],
E           
E                    [[0.8732]],
E           
E                    [[0.7662]],
E           
E                    [[1.7564]],
E           
E                    [[1.1258]],
E           
E                    [[0.8769]],
E           
E                    [[0.3532]],
E           
E                    [[1.1575]],
E           
E                    [[1.0183]],
E           
E                    [[1.2150]],
E           
E                    [[1.4583]],
E           
E                    [[0.8874]],
E           
E                    [[1.6400]],
E           
E                    [[0.8229]],
E           
E                    [[0.2676]],
E           
E                    [[1.5155]],
E           
E                    [[0.3332]],
E           
E                    [[1.0228]],
E           
E                    [[0.2706]],
E           
E                    [[0.7631]],
E           
E                    [[0.9096]],
E           
E                    [[1.7062]],
E           
E                    [[0.5169]],
E           
E                    [[1.3513]],
E           
E                    [[1.6301]],
E           
E                    [[1.3423]],
E           
E                    [[0.5803]],
E           
E                    [[1.2377]],
E           
E                    [[1.0897]],
E           
E                    [[1.2745]],
E           
E                    [[1.6742]],
E           
E                    [[0.4751]],
E           
E                    [[1.4730]],
E           
E                    [[1.2369]],
E           
E                    [[1.0011]],
E           
E                    [[1.0953]],
E           
E                    [[1.5688]],
E           
E                    [[1.0690]],
E           
E                    [[0.9844]],
E           
E                    [[1.2125]],
E           
E                    [[0.7603]],
E           
E                    [[1.5376]],
E           
E                    [[1.4567]],
E           
E                    [[0.9513]],
E           
E                    [[1.0860]],
E           
E                    [[1.1686]],
E           
E                    [[1.2674]],
E           
E                    [[1.1347]],
E           
E                    [[1.3529]],
E           
E                    [[1.2792]]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError

Check failure on line 18561 in forge/test/models_ops/test_add.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_add.test_module[Add1-[((1, 768, 1, 1), torch.float32)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.6126]],

         [[0.8846]],

         [[0.2049]],

         [[0.2484]],

         [[0.4238]],

         [[0.7505]],

         [[0.6065]],

         [[1.0128]],

         [[0.5720]],

         [[0.7487]],

         [[0.4653]],

         [[0.5181]],

         [[0.1387]],

         [[0.2852]],

         [[0.4103]],

         [[0.6349]],

         [[0.8141]],

         [[0.9164]],

         [[0.2774]],

         [[0.3987]],

         [[0.7980]],

         [[1.0316]],

         [[0.5135]],

         [[0.9905]],

         [[0.5358]],

         [[0.6693]],

         [[1.0691]],

         [[0.1525]],

         [[0.3016]],

         [[0.4898]],

         [[0.4215]],

         [[1.0484]],

         [[0.2923]],

         [[0.3862]],

         [[0.2671]],

         [[0.1481]],

         [[0.3245]],

         [[1.0462]],

         [[0.8395]],

         [[0.8587]],

         [[0.6427]],

         [[0.3600]],

         [[0.7010]],

         [[0.1495]],

         [[0.2551]],

         [[0.3586]],

         [[0.9319]],

         [[0.9095]],

         [[0.3946]],

         [[0.5983]],

         [[0.9362]],

         [[1.1134]],

         [[0.8148]],

         [[0.6839]],

         [[0.9516]],

         [[0.3220]],

         [[0.7096]],

         [[0.2287]],

         [[0.2698]],

         [[0.3581]],

         [[0.8426]],

         [[0.8175]],

         [[0.3202]],

         [[0.7674]],

         [[0.8909]],

         [[0.5533]],

         [[0.6355]],

         [[0.7322]],

         [[0.9266]],

         [[1.0965]],

         [[0.2311]],

         [[0.4331]],

         [[0.8129]],

         [[1.0307]],

         [[1.0515]],

         [[1.0576]],

         [[0.7159]],

         [[0.1816]],

         [[0.6624]],

         [[0.3036]],

         [[0.1504]],

         [[1.0606]],

         [[0.9966]],

         [[0.1176]],

         [[0.7100]],

         [[0.5322]],

         [[0.5341]],

         [[0.3875]],

         [[0.8087]],

         [[0.3202]],

         [[0.7997]],

         [[0.8692]],

         [[0.9743]],

         [[0.8033]],

         [[0.1215]],

         [[0.2920]],

         [[0.8660]],

         [[0.7210]],

         [[0.2263]],

         [[0.3285]],

         [[1.0868]],

         [[0.9533]],

         [[0.3984]],

         [[0.4905]],

         [[0.1401]],

         [[0.6074]],

         [[0.2399]],

         [[0.2307]],

         [[0.5888]],

         [[0.6915]],

         [[0.4116]],

         [[0.9131]],

         [[0.3121]],

         [[1.0701]],

         [[0.9590]],

         [[0.1947]],

         [[0.4919]],

         [[0.6389]],

         [[0.6893]],

         [[0.7350]],

         [[0.8126]],

         [[0.6463]],

         [[0.3724]],

         [[0.8530]],

         [[0.1368]],

         [[0.3200]],

         [[0.4912]],

         [[0.3728]],

         [[0.4415]],

         [[0.2066]],

         [[0.5100]],

         [[0.7233]],

         [[0.2906]],

         [[0.5907]],

         [[0.9743]],

         [[0.5650]],

         [[0.6303]],

         [[0.5732]],

         [[0.7176]],

         [[0.9343]],

         [[1.0900]],

         [[0.9339]],

         [[1.0911]],

         [[0.5802]],

         [[0.1672]],

         [[0.3793]],

         [[0.9568]],

         [[0.6131]],

         [[0.3679]],

         [[0.2332]],

         [[0.1485]],

         [[0.1944]],

         [[0.5150]],

         [[0.8906]],

         [[0.8867]],

         [[0.1342]],

         [[0.9283]],

         [[0.2251]],

         [[0.5107]],

         [[0.4136]],

         [[0.5201]],

         [[0.5182]],

         [[0.1677]],

         [[0.1847]],

         [[0.5381]],

         [[0.6228]],

         [[0.3892]],

         [[0.8047]],

         [[0.1664]],

         [[0.5826]],

         [[1.0561]],

         [[0.4124]],

         [[1.0679]],

         [[0.7975]],

         [[0.1652]],

         [[0.9327]],

         [[0.5587]],

         [[0.3932]],

         [[1.0162]],

         [[0.2123]],

         [[0.6700]],

         [[0.5117]],

         [[0.9734]],

         [[0.7560]],

         [[0.8566]],

         [[0.7930]],

         [[0.4961]],

         [[0.5112]],

         [[0.2043]],

         [[0.8873]],

         [[1.0134]],

         [[0.9585]],

         [[0.2637]],

         [[0.6387]],

         [[0.2639]],

         [[0.3411]],

         [[0.3250]],

         [[0.7873]],

         [[0.3184]],

         [[0.6055]],

         [[0.6374]],

         [[0.9387]],

         [[0.2384]],

         [[0.2731]],

         [[0.3261]],

         [[0.9663]],

         [[0.4367]],

         [[1.0381]],

         [[0.7972]],

         [[0.6797]],

         [[0.6127]],

         [[0.5175]],

         [[0.6791]],

         [[0.5022]],

         [[0.6129]],

         [[0.6802]],

         [[0.2253]],

         [[0.3543]],

         [[1.0201]],

         [[0.2106]],

         [[0.5805]],

         [[1.1110]],

         [[0.7970]],

         [[0.6305]],

         [[0.1831]],

         [[0.8641]],

         [[0.2602]],

         [[0.4745]],

         [[0.4486]],

         [[0.5423]],

         [[0.6219]],

         [[1.0288]],

         [[0.6788]],

         [[1.0642]],

         [[0.9222]],

         [[0.3003]],

         [[0.8406]],

         [[0.2629]],

         [[0.4045]],

         [[0.7634]],

         [[0.7815]],

         [[0.9915]],

         [[0.4554]],

         [[0.6172]],

         [[0.8738]],

         [[0.1328]],

         [[0.9779]],

         [[0.2029]],

         [[0.6233]],

         [[0.5314]],

         [[0.3530]],

         [[0.6825]],

         [[1.0298]],

         [[0.4702]],

         [[0.3195]],

         [[0.4315]],

         [[0.1208]],

         [[0.8421]],

         [[0.3763]],

         [[0.2827]],

         [[0.3283]],

         [[0.9039]],

         [[0.8812]],

         [[1.0001]],

         [[0.7977]],

         [[0.4494]],

         [[0.4767]],

         [[0.7641]],

         [[1.0274]],

         [[0.7523]],

         [[0.3798]],

         [[0.3813]],

         [[0.1436]],

         [[0.7244]],

         [[0.3358]],

         [[0.1706]],

         [[1.0548]],

         [[0.2917]],

         [[0.5595]],

         [[0.7596]],

         [[0.6323]],

         [[0.2799]],

         [[0.2122]],

         [[1.0149]],

         [[0.6978]],

         [[1.0312]],

         [[0.4488]],

         [[0.7637]],

         [[0.5020]],

         [[0.5941]],

         [[0.3119]],

         [[0.7855]],

         [[0.7745]],

         [[0.6061]],

         [[0.5039]],

         [[0.3082]],

         [[0.9622]],

         [[0.2442]],

         [[0.8212]],

         [[0.4483]],

         [[0.3751]],

         [[0.7062]],

         [[0.3567]],

         [[0.7316]],

         [[0.7146]],

         [[0.2451]],

         [[0.6996]],

         [[0.8293]],

         [[0.8143]],

         [[0.5534]],

         [[0.2065]],

         [[0.5393]],

         [[0.7900]],

         [[0.4339]],

         [[0.8062]],

         [[0.9494]],

         [[0.3553]],

         [[0.6213]],

         [[0.8231]],

         [[0.6556]],

         [[0.6581]],

         [[0.6788]],

         [[0.2233]],

         [[0.6557]],

         [[0.9626]],

         [[1.0669]],

         [[0.9103]],

         [[0.6834]],

         [[0.8499]],

         [[0.3731]],

         [[0.2020]],

         [[0.1864]],

         [[1.1152]],

         [[0.9338]],

         [[0.2708]],

         [[0.8120]],

         [[0.9940]],

         [[1.1162]],

         [[1.0536]],

         [[1.0038]],

         [[0.5018]],

         [[0.4409]],

         [[1.0269]],

         [[0.8966]],

         [[0.3155]],

         [[1.0659]],

         [[0.8580]],

         [[0.8890]],

         [[0.3030]],

         [[0.7598]],

         [[0.4411]],

         [[1.0071]],

         [[0.5264]],

         [[0.8110]],

         [[0.7052]],

         [[0.8291]],

         [[0.4465]],

         [[0.8602]],

         [[0.2671]],

         [[0.7293]],

         [[0.2781]],

         [[0.1231]],

         [[0.2149]],

         [[1.0111]],

         [[0.8869]],

         [[1.0855]],

         [[1.0169]],

         [[0.1699]],

         [[0.2752]],

         [[0.5356]],

         [[0.2917]],

         [[0.9636]],

         [[0.2384]],

         [[0.3724]],

         [[0.1333]],

         [[0.3325]],

         [[1.0276]],

         [[1.0258]],

         [[0.9743]],

         [[1.0024]],

         [[1.0610]],

         [[0.4884]],

         [[0.8364]],

         [[1.0618]],

         [[0.7818]],

         [[1.1162]],

         [[0.8757]],

         [[0.9272]],

         [[0.4414]],

         [[0.8563]],

         [[0.6738]],

         [[0.4970]],

         [[0.3345]],

         [[0.3358]],

         [[0.2316]],

         [[0.9520]],

         [[0.9718]],

         [[0.5595]],

         [[0.3270]],

         [[1.0028]],

         [[0.9361]],

         [[0.6535]],

         [[0.3803]],

         [[1.0759]],

         [[0.8209]],

         [[0.2368]],

         [[1.0949]],

         [[0.9961]],

         [[0.4341]],

         [[0.8975]],

         [[0.3323]],

         [[0.5380]],

         [[1.0409]],

         [[0.6370]],

         [[0.2628]],

         [[0.4493]],

         [[0.4807]],

         [[0.5199]],

         [[0.6642]],

         [[1.0788]],

         [[0.6432]],

         [[0.3077]],

         [[0.6420]],

         [[0.8561]],

         [[0.8644]],

         [[0.1594]],

         [[0.5269]],

         [[0.2448]],

         [[0.4030]],

         [[0.7965]],

         [[0.2613]],

         [[0.8022]],

         [[1.0408]],

         [[0.6492]],

         [[0.2831]],

         [[0.4372]],

         [[0.7256]],

         [[0.2352]],

         [[0.8648]],

         [[0.1624]],

         [[0.1357]],

         [[0.1306]],

         [[0.5150]],

         [[0.9526]],

         [[0.1431]],

         [[1.0320]],

         [[0.4164]],

         [[0.7628]],

         [[0.6392]],

         [[0.1655]],

         [[1.0310]],

         [[0.8856]],

         [[1.1134]],

         [[0.8690]],

         [[0.2863]],

         [[1.0337]],

         [[0.6433]],

         [[0.8535]],

         [[0.2155]],

         [[0.4726]],

         [[0.1254]],

         [[0.4216]],

         [[0.7242]],

         [[0.2238]],

         [[0.7758]],

         [[0.8848]],

         [[0.6860]],

         [[0.2818]],

         [[0.2287]],

         [[0.4621]],

         [[0.8359]],

         [[1.1096]],

         [[0.9039]],

         [[0.5601]],

         [[0.7917]],

         [[0.1259]],

         [[0.1893]],

         [[0.8497]],

         [[0.3332]],

         [[0.8569]],

         [[0.2634]],

         [[0.3687]],

         [[0.2045]],

         [[0.8773]],

         [[0.5654]],

         [[1.0012]],

         [[0.9258]],

         [[0.8931]],

         [[0.6325]],

         [[0.4618]],

         [[0.5077]],

         [[0.6828]],

         [[0.8642]],

         [[0.2661]],

         [[1.0360]],

         [[0.5620]],

         [[0.1974]],

         [[0.3459]],

         [[1.0588]],

         [[1.0736]],

         [[0.1532]],

         [[0.9690]],

         [[0.8670]],

         [[0.9123]],

         [[1.0396]],

         [[0.3469]],

         [[0.7743]],

         [[0.8210]],

         [[0.4686]],

         [[0.7837]],

         [[0.4725]],

         [[0.9255]],

         [[0.4777]],

         [[0.4300]],

         [[0.7423]],

         [[0.7937]],

         [[0.3721]],

         [[0.6606]],

         [[0.9062]],

         [[0.5666]],

         [[0.7685]],

         [[0.4958]],

         [[0.7916]],

         [[0.2542]],

         [[0.3224]],

         [[0.3626]],

         [[1.0759]],

         [[0.4818]],

         [[0.6150]],

         [[0.3741]],

         [[1.1155]],

         [[1.1047]],

         [[0.2393]],

         [[0.2110]],

         [[0.2374]],

         [[0.6140]],

         [[0.4889]],

         [[0.2891]],

         [[0.4370]],

         [[0.7108]],

         [[0.3551]],

         [[0.7272]],

         [[0.5017]],

         [[0.3741]],

         [[0.6851]],

         [[1.0275]],

         [[0.2783]],

         [[0.6396]],

         [[0.4320]],

         [[1.1070]],

         [[0.1420]],

         [[0.1371]],

         [[1.1091]],

         [[0.3000]],

         [[0.7122]],

         [[0.5732]],

         [[0.5111]],

         [[0.5047]],

         [[0.9341]],

         [[0.6403]],

         [[0.1296]],

         [[0.3212]],

         [[0.4459]],

         [[0.8680]],

         [[0.2928]],

         [[1.0878]],

         [[0.5050]],

         [[0.5266]],

         [[1.0082]],

         [[0.8677]],

         [[1.0404]],

         [[0.9056]],

         [[0.4647]],

         [[0.2846]],

         [[0.5792]],

         [[1.0302]],

         [[0.4486]],

         [[0.1527]],

         [[0.8213]],

         [[1.1031]],

         [[0.4740]],

         [[0.2024]],

         [[0.1629]],

         [[0.7417]],

         [[0.5785]],

         [[0.3639]],

         [[0.7174]],

         [[0.8063]],

         [[1.0140]],

         [[1.0046]],

         [[0.5415]],

         [[0.1755]],

         [[0.1646]],

         [[1.0832]],

         [[0.8374]],

         [[0.8343]],

         [[0.1838]],

         [[1.0794]],

         [[1.0901]],

         [[1.0678]],

         [[0.1946]],

         [[0.4277]],

         [[0.2725]],

         [[1.0899]],

         [[0.4015]],

         [[0.3881]],

         [[0.8783]],

         [[0.3851]],

         [[0.3701]],

         [[0.5726]],

         [[0.5683]],

         [[0.2269]],

         [[1.0332]],

         [[0.3958]],

         [[0.7937]],

         [[1.0513]],

         [[0.8685]],

         [[0.6872]],

         [[1.0418]],

         [[0.6836]],

         [[0.3851]],

         [[1.0894]],

         [[0.7347]],

         [[0.1285]],

         [[0.4740]],

         [[0.2758]],

         [[1.0548]],

         [[0.5338]],

         [[0.1606]],

         [[0.5850]],

         [[0.9304]],

         [[0.7463]],

         [[0.7745]],

         [[0.6628]],

         [[0.8028]],

         [[0.4946]],

         [[0.4175]],

         [[0.1490]],

         [[0.2397]],

         [[0.8331]],

         [[0.3203]],

         [[0.6881]],

         [[0.7760]],

         [[0.6518]],

         [[0.2922]],

         [[1.0945]],

         [[0.3256]],

         [[1.0276]],

         [[0.2186]],

         [[0.4961]],

         [[0.8884]],

         [[0.4121]],

         [[1.0364]],

         [[0.2723]],

         [[0.1965]],

         [[0.3909]],

         [[0.6972]],

         [[1.0768]],

         [[0.3777]],

         [[0.7952]],

         [[0.4910]],

         [[0.5080]],

         [[0.9840]],

         [[0.2289]],

         [[0.6695]],

         [[1.0866]],

         [[0.5477]],

         [[1.0046]],

         [[0.4624]],

         [[1.0189]],

         [[0.1327]],

         [[0.5443]],

         [[0.5286]],

         [[0.7784]],

         [[0.8125]],

         [[1.0003]],

         [[0.5419]],

         [[0.5966]],

         [[0.9588]],

         [[0.4811]],

         [[1.0547]],

         [[0.2835]],

         [[0.5623]],

         [[0.5895]],

         [[0.8395]],

         [[0.9582]],

         [[0.5371]],

         [[0.2021]],

         [[0.8641]],

         [[0.7659]],

         [[0.8172]],

         [[0.3079]],

         [[0.9382]],

         [[1.0900]],

         [[0.6598]],

         [[0.1494]],

         [[0.9674]],

         [[0.2457]],

         [[0.7313]],

         [[0.6890]],

         [[0.3824]],

         [[0.7905]],

         [[0.1692]],

         [[0.7303]],

         [[0.2994]],

         [[0.5623]],

         [[0.6807]],

         [[1.0424]],

         [[0.3778]],

         [[0.9367]],

         [[0.5529]],

         [[0.3789]],

         [[0.1810]],

         [[0.1576]],

         [[1.1047]],

         [[0.4917]],

         [[0.6414]],

         [[0.7519]],

         [[0.9562]],

         [[1.0431]],

         [[1.0219]],

         [[0.2459]],

         [[0.5363]],

         [[0.3205]],

         [[0.3307]],

         [[0.7350]],

         [[1.0857]],

         [[0.2158]],

         [[0.9190]],

         [[0.3571]],

         [[0.5190]],

         [[1.0133]],

         [[0.5033]],

         [[0.6619]],

         [[0.2669]],

         [[1.0420]],

         [[0.5517]],

         [[0.2507]],

         [[0.7628]],

         [[0.2609]],

         [[0.2196]],

         [[0.6468]],

         [[1.0128]],

         [[0.4749]],

         [[0.8517]],

         [[1.0460]],

         [[0.9480]],

         [[0.3541]],

         [[0.5616]],

         [[0.4590]],

         [[0.2143]],

         [[0.6166]],

         [[0.9926]],

         [[1.0376]],

         [[0.6630]],

         [[0.7299]],

         [[0.3999]],

         [[0.9938]],

         [[0.4083]],

         [[0.2691]],

         [[0.6934]],

         [[0.9161]],

         [[0.1656]],

         [[1.0684]],

         [[0.7962]],

         [[0.2661]],

         [[0.5087]],

         [[1.0502]]]]), compiled_model=tensor([[[[0.6126]],

         [[1.2848]],

         [[1.0160]],

         [[1.2694]],

         [[1.4213]],

         [[2.3958]],

         [[1.8068]],

         [[1.6497]],

         [[1.5160]],

         [[1.3800]],

         [[1.3065]],

         [[1.6005]],

         [[1.6513]],

         [[1.9601]],

         [[1.6164]],

         [[1.6097]],

         [[1.9246]],

         [[1.3664]],

         [[1.8692]],

         [[0.6697]],

         [[2.0294]],

         [[1.4288]],

         [[1.3829]],

         [[1.8493]],

         [[1.9277]],

         [[1.3387]],

         [[1.2251]],

         [[1.0213]],

         [[0.8859]],

         [[0.9770]],

         [[0.9892]],

         [[1.8138]],

         [[0.2374]],

         [[0.6005]],

         [[0.9480]],

         [[0.7636]],

         [[0.5917]],

         [[1.1473]],

         [[0.7865]],

         [[1.2318]],

         [[1.1798]],

         [[0.4441]],

         [[1.2248]],

         [[0.0906]],

         [[1.0227]],

         [[1.1868]],

         [[1.3895]],

         [[0.9885]],

         [[1.0885]],

         [[1.2370]],

         [[1.3197]],

         [[1.7293]],

         [[0.7099]],

         [[1.0727]],

         [[1.4802]],

         [[0.2418]],

         [[1.2931]],

         [[0.1234]],

         [[0.2045]],

         [[1.1550]],

         [[1.1481]],

         [[0.8601]],

         [[0.3194]],

         [[1.0265]],

         [[1.6777]],

         [[1.4126]],

         [[1.2075]],

         [[1.5906]],

         [[1.7955]],

         [[1.6138]],

         [[0.8287]],

         [[0.7832]],

         [[1.5611]],

         [[1.1540]],

         [[1.4845]],

         [[0.9444]],

         [[1.4038]],

         [[0.2444]],

         [[1.0907]],

         [[0.7321]],

         [[0.9338]],

         [[1.4633]],

         [[1.4846]],

         [[0.9817]],

         [[0.8220]],

         [[0.5517]],

         [[0.4593]],

         [[1.1572]],

         [[1.1279]],

         [[0.8503]],

         [[1.1452]],

         [[1.2103]],

         [[1.4099]],

         [[1.3334]],

         [[0.5659]],

         [[0.9579]],

         [[1.2076]],

         [[0.8140]],

         [[0.4364]],

         [[0.4326]],

         [[1.3254]],

         [[1.5006]],

         [[1.0986]],

         [[1.2798]],

         [[0.1399]],

         [[1.0973]],

         [[0.5150]],

         [[0.4405]],

         [[0.7021]],

         [[0.7749]],

         [[0.3826]],

         [[1.3529]],

         [[0.5807]],

         [[1.3827]],

         [[1.0387]],

         [[1.0401]],

         [[1.1456]],

         [[0.9159]],

         [[1.1292]],

         [[1.1570]],

         [[0.8227]],

         [[0.9625]],

         [[0.4529]],

         [[1.6120]],

         [[0.3370]],

         [[0.8798]],

         [[0.8990]],

         [[0.9069]],

         [[1.1384]],

         [[0.4043]],

         [[1.1263]],

         [[1.6357]],

         [[0.2014]],

         [[1.0763]],

         [[1.7242]],

         [[1.3095]],

         [[0.8056]],

         [[0.6268]],

         [[0.8594]],

         [[1.1548]],

         [[1.3673]],

         [[1.2529]],

         [[1.3709]],

         [[0.8524]],

         [[0.3360]],

         [[0.9610]],

         [[1.6263]],

         [[1.1979]],

         [[1.0936]],

         [[0.8229]],

         [[0.1400]],

         [[0.1710]],

         [[1.3183]],

         [[0.9412]],

         [[1.1481]],

         [[0.1308]],

         [[1.6401]],

         [[0.4380]],

         [[0.8501]],

         [[0.6224]],

         [[1.3691]],

         [[0.9949]],

         [[0.9480]],

         [[0.5096]],

         [[0.6035]],

         [[1.3836]],

         [[0.5854]],

         [[1.1615]],

         [[0.4958]],

         [[1.3817]],

         [[1.2827]],

         [[0.5330]],

         [[1.7376]],

         [[0.6885]],

         [[0.6305]],

         [[1.0935]],

         [[0.9451]],

         [[0.9119]],

         [[1.4459]],

         [[0.1576]],

         [[1.1332]],

         [[0.4227]],

         [[1.6680]],

         [[1.2446]],

         [[1.4015]],

         [[1.3785]],

         [[0.8574]],

         [[0.6743]],

         [[1.0355]],

         [[1.4556]],

         [[1.5962]],

         [[1.2893]],

         [[0.7187]],

         [[0.8241]],

         [[0.6641]],

         [[0.2641]],

         [[0.5556]],

         [[1.2640]],

         [[1.0477]],

         [[1.3508]],

         [[1.2026]],

         [[1.1886]],

         [[0.6963]],

         [[0.9974]],

         [[0.5141]],

         [[1.0149]],

         [[1.0223]],

         [[1.0912]],

         [[1.3983]],

         [[0.8444]],

         [[0.8843]],

         [[1.1670]],

         [[0.6696]],

         [[1.3738]],

         [[1.0526]],

         [[1.2752]],

         [[0.3498]],

         [[1.0497]],

         [[1.2026]],

         [[0.3160]],

         [[1.1349]],

         [[1.4383]],

         [[1.6453]],

         [[1.3276]],

         [[0.2614]],

         [[1.5299]],

         [[0.2603]],

         [[0.6403]],

         [[0.4558]],

         [[0.9367]],

         [[1.3269]],

         [[1.8576]],

         [[0.6303]],

         [[1.4144]],

         [[1.6265]],

         [[0.7495]],

         [[0.7885]],

         [[1.0388]],

         [[0.9865]],

         [[1.3551]],

         [[1.5915]],

         [[1.2005]],

         [[0.8924]],

         [[1.2920]],

         [[1.6775]],

         [[0.8823]],

         [[1.4878]],

         [[0.1983]],

         [[1.4544]],

         [[0.7748]],

         [[0.2464]],

         [[1.3077]],

         [[1.4468]],

         [[1.0747]],

         [[0.6312]],

         [[0.7790]],

         [[0.9196]],

         [[1.1931]],

         [[1.2566]],

         [[0.6364]],

         [[0.8211]],

         [[1.3929]],

         [[1.4142]],

         [[1.6697]],

         [[1.5049]],

         [[1.1232]],

         [[1.0635]],

         [[1.4802]],

         [[1.2590]],

         [[0.7796]],

         [[0.4875]],

         [[0.8763]],

         [[0.4816]],

         [[1.3006]],

         [[0.7318]],

         [[0.8392]],

         [[1.7960]],

         [[1.3755]],

         [[0.6008]],

         [[1.4453]],

         [[0.9797]],

         [[1.0866]],

         [[1.0618]],

         [[2.0797]],

         [[1.6812]],

         [[2.5374]],

         [[1.4114]],

         [[1.3509]],

         [[0.5059]],

         [[0.8936]],

         [[0.7964]],

         [[1.8690]],

         [[2.1023]],

         [[1.8946]],

         [[1.0272]],

         [[0.9288]],

         [[1.8206]],

         [[1.4754]],

         [[1.3074]],

         [[2.0077]],

         [[1.1789]],

         [[2.2261]],

         [[1.3041]],

         [[1.4190]],

         [[1.3649]],

         [[1.8771]],

         [[1.8186]],

         [[3.4382]],

         [[2.2413]],

         [[2.0677]],

         [[0.9465]],

         [[1.2515]],

         [[0.9109]],

         [[1.9000]],

         [[2.4696]],

         [[2.2930]],

         [[2.2815]],

         [[1.5966]],

         [[2.3724]],

         [[0.8604]],

         [[1.5051]],

         [[2.4747]],

         [[1.3839]],

         [[2.6422]],

         [[1.9355]],

         [[2.6077]],

         [[3.5365]],

         [[2.5946]],

         [[2.4315]],

         [[2.0030]],

         [[2.0260]],

         [[1.8532]],

         [[2.0702]],

         [[2.1804]],

         [[1.3509]],

         [[1.3079]],

         [[1.8872]],

         [[3.2374]],

         [[2.5755]],

         [[2.5748]],

         [[1.7180]],

         [[1.9157]],

         [[2.1155]],

         [[2.0252]],

         [[2.1283]],

         [[2.6453]],

         [[1.8267]],

         [[2.7580]],

         [[1.2133]],

         [[3.0068]],

         [[2.4631]],

         [[3.5406]],

         [[2.6474]],

         [[1.5911]],

         [[2.0927]],

         [[1.9897]],

         [[1.1013]],

         [[2.2189]],

         [[1.8797]],

         [[1.7149]],

         [[1.8627]],

         [[1.7744]],

         [[1.2092]],

         [[1.9356]],

         [[3.0628]],

         [[1.8478]],

         [[2.9875]],

         [[1.5559]],

         [[1.8827]],

         [[2.6651]],

         [[0.9461]],

         [[1.6017]],

         [[1.6695]],

         [[2.5003]],

         [[2.0576]],

         [[1.9773]],

         [[2.5010]],

         [[1.9855]],

         [[2.6145]],

         [[1.5627]],

         [[1.5144]],

         [[2.3694]],

         [[1.9382]],

         [[1.3083]],

         [[1.9379]],

         [[2.4450]],

         [[2.2285]],

         [[1.9401]],

         [[1.7861]],

         [[2.8128]],

         [[2.4591]],

         [[1.8723]],

         [[2.0155]],

         [[2.3503]],

         [[1.1160]],

         [[2.1577]],

         [[3.0725]],

         [[2.0452]],

         [[0.6609]],

         [[2.4660]],

         [[2.6077]],

         [[2.1282]],

         [[1.7682]],

         [[2.1097]],

         [[1.4182]],

         [[1.2314]],

         [[1.5169]],

         [[1.6490]],

         [[1.9213]],

         [[2.4415]],

         [[2.2367]],

         [[2.2775]],

         [[2.6166]],

         [[2.1888]],

         [[1.9791]],

         [[1.9199]],

         [[2.5306]],

         [[2.4902]],

         [[2.8823]],

         [[2.0688]],

         [[1.8810]],

         [[1.0920]],

         [[2.3474]],

         [[2.4195]],

         [[1.9421]],

         [[0.5074]],

         [[1.7197]],

         [[0.8028]],

         [[1.4251]],

         [[1.6292]],

         [[1.6941]],

         [[1.4418]],

         [[2.7376]],

         [[1.3668]],

         [[1.7058]],

         [[1.9953]],

         [[2.4717]],

         [[1.0840]],

         [[2.1752]],

         [[1.1282]],

         [[1.7456]],

         [[2.2936]],

         [[2.1847]],

         [[2.0868]],

         [[0.4776]],

         [[2.6363]],

         [[2.3964]],

         [[2.2233]],

         [[2.1941]],

         [[1.0426]],

         [[1.0969]],

         [[1.7524]],

         [[2.8103]],

         [[2.5829]],

         [[2.1974]],

         [[1.6278]],

         [[1.8984]],

         [[1.5967]],

         [[1.8116]],

         [[2.0388]],

         [[1.2349]],

         [[2.2243]],

         [[1.9059]],

         [[0.7112]],

         [[1.3967]],

         [[2.2582]],

         [[1.9320]],

         [[2.0975]],

         [[0.8482]],

         [[1.9527]],

         [[2.3510]],

         [[2.3400]],

         [[2.5700]],

         [[2.5577]],

         [[1.8749]],

         [[1.5995]],

         [[1.1973]],

         [[1.8890]],

         [[1.2458]],

         [[1.1657]],

         [[1.5863]],

         [[1.8063]],

         [[1.9647]],

         [[2.4828]],

         [[2.3427]],

         [[2.1381]],

         [[2.0973]],

         [[2.0794]],

         [[2.0545]],

         [[2.4333]],

         [[1.9909]],

         [[2.5594]],

         [[1.7360]],

         [[1.3406]],

         [[2.4576]],

         [[1.5924]],

         [[0.8783]],

         [[1.9326]],

         [[2.5579]],

         [[2.5777]],

         [[0.7577]],

         [[3.0607]],

         [[1.9372]],

         [[2.2474]],

         [[1.8932]],

         [[1.8002]],

         [[2.3377]],

         [[2.6462]],

         [[2.0837]],

         [[2.9944]],

         [[2.2693]],

         [[1.8470]],

         [[2.0004]],

         [[1.0882]],

         [[2.2923]],

         [[1.8939]],

         [[1.6876]],

         [[2.1404]],

         [[2.1730]],

         [[2.0086]],

         [[2.4434]],

         [[1.8390]],

         [[2.5747]],

         [[1.5938]],

         [[1.2155]],

         [[1.7041]],

         [[1.6980]],

         [[2.0306]],

         [[2.0170]],

         [[1.1282]],

         [[2.1298]],

         [[2.4408]],

         [[1.2412]],

         [[2.5821]],

         [[1.6976]],

         [[1.4172]],

         [[1.6449]],

         [[1.7079]],

         [[2.0430]],

         [[2.6771]],

         [[2.5491]],

         [[2.7351]],

         [[2.0681]],

         [[1.9967]],

         [[2.7066]],

         [[2.1135]],

         [[2.1336]],

         [[1.1756]],

         [[1.6907]],

         [[2.1122]],

         [[1.2308]],

         [[1.0500]],

         [[3.4394]],

         [[1.1448]],

         [[1.3113]],

         [[2.0852]],

         [[1.6113]],

         [[1.1555]],

         [[1.5977]],

         [[2.3042]],

         [[0.6561]],

         [[1.4503]],

         [[1.4592]],

         [[2.1307]],

         [[0.9457]],

         [[1.6667]],

         [[0.6475]],

         [[1.5688]],

         [[2.2034]],

         [[1.4415]],

         [[1.9518]],

         [[1.0384]],

         [[2.0780]],

         [[1.2406]],

         [[1.7417]],

         [[1.4410]],

         [[1.4012]],

         [[1.3812]],

         [[1.4452]],

         [[2.3342]],

         [[0.9673]],

         [[0.7199]],

         [[1.2747]],

         [[1.3745]],

         [[1.8599]],

         [[0.6956]],

         [[0.7423]],

         [[2.0261]],

         [[1.9932]],

         [[1.3647]],

         [[1.2305]],

         [[1.2676]],

         [[1.1903]],

         [[2.4475]],

         [[2.1162]],

         [[2.2319]],

         [[1.5944]],

         [[2.1591]],

         [[1.7946]],

         [[1.9572]],

         [[1.7890]],

         [[1.5016]],

         [[1.4994]],

         [[1.5437]],

         [[1.8230]],

         [[0.7076]],

         [[1.3923]],

         [[0.8836]],

         [[2.1523]],

         [[1.7927]],

         [[1.2108]],

         [[1.7866]],

         [[2.0229]],

         [[1.4151]],

         [[1.6562]],

         [[2.7083]],

         [[1.5731]],

         [[1.5418]],

         [[2.2979]],

         [[1.8049]],

         [[1.0198]],

         [[2.5689]],

         [[1.9207]],

         [[1.5669]],

         [[1.0022]],

         [[1.0122]],

         [[1.5896]],

         [[1.5286]],

         [[0.8092]],

         [[1.8269]],

         [[2.2194]],

         [[2.2483]],

         [[1.1044]],

         [[1.8965]],

         [[1.2287]],

         [[1.3173]],

         [[0.6925]],

         [[0.2392]],

         [[0.3092]],

         [[2.1677]],

         [[1.3594]],

         [[1.9699]],

         [[1.7562]],

         [[1.5506]],

         [[1.1047]],

         [[1.7907]],

         [[0.9408]],

         [[2.2968]],

         [[0.3507]],

         [[1.0683]],

         [[0.9858]],

         [[1.3872]],

         [[2.1478]],

         [[1.7414]],

         [[1.4622]],

         [[1.8111]],

         [[2.3387]],

         [[1.6464]],

         [[1.7140]],

         [[2.6531]],

         [[1.0672]],

         [[1.9934]],

         [[2.4933]],

         [[1.7842]],

         [[1.1698]],

         [[1.8800]],

         [[1.2470]],

         [[1.6057]],

         [[0.9578]],

         [[1.5573]],

         [[0.5278]],

         [[1.6522]],

         [[1.5528]],

         [[1.8032]],

         [[1.6927]],

         [[2.4716]],

         [[2.0874]],

         [[1.7234]],

         [[1.2143]],

         [[1.4172]],

         [[2.5625]],

         [[0.4545]],

         [[1.8022]],

         [[1.4658]],

         [[1.8691]],

         [[1.9522]],

         [[1.0924]],

         [[0.8325]],

         [[2.6378]],

         [[1.7633]],

         [[1.7439]],

         [[0.9657]],

         [[1.3678]],

         [[2.2543]],

         [[1.4037]],

         [[1.4686]],

         [[1.8236]],

         [[1.2360]],

         [[1.4836]],

         [[1.5494]],

         [[1.8001]],

         [[0.7246]],

         [[1.0451]],

         [[1.0195]],

         [[0.9725]],

         [[1.7612]],

         [[1.2553]],

         [[1.6735]],

         [[1.7654]],

         [[1.3805]],

         [[1.4142]],

         [[1.1884]],

         [[1.3351]],

         [[0.8620]],

         [[2.2143]],

         [[0.7008]],

         [[1.4919]],

         [[1.3344]],

         [[1.9377]],

         [[2.2101]],

         [[1.5036]],

         [[1.3469]],

         [[1.2364]],

         [[0.8899]],

         [[1.0841]],

         [[1.2609]],

         [[2.7297]],

         [[1.7304]],

         [[2.4812]],

         [[1.3597]],

         [[1.1469]],

         [[2.6549]],

         [[1.2182]],

         [[1.4476]],

         [[0.9516]],

         [[1.4513]],

         [[1.1619]],

         [[0.7207]],

         [[1.6423]],

         [[1.0177]],

         [[0.8695]],

         [[2.2868]],

         [[2.0222]],

         [[1.2354]],

         [[1.0886]],

         [[2.0872]],

         [[1.8500]],

         [[1.4527]],

         [[1.9035]],

         [[1.2301]],

         [[1.7380]],

         [[1.3231]],

         [[1.1438]],

         [[2.4368]],

         [[0.8798]],

         [[1.6363]],

         [[0.5542]],

         [[1.6405]],

         [[1.2016]],

         [[1.8588]],

         [[1.0939]],

         [[2.1510]],

         [[1.6793]],

         [[2.2943]],

         [[1.2602]],

         [[1.3874]],

         [[1.4820]],

         [[2.2083]]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_add.Add1'>, [((1, 768, 1, 1), torch.float32)], {'model_name': ['pt_vovnet_ese_vovnet39b_obj_det_torchhub', 'pt_vovnet_ese_vovnet19b_dw_obj_det_torchhub', 'pt_vovnet_ese_vovnet99b_obj_det_torchhub']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0b789d0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Add")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_add.py:18561: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5d0e2b0a0>
fw_out = tensor([[[[0.6126]],

         [[0.8846]],

         [[0.2049]],

         [[0.2484]],

         [[0.4238]],

        ...1656]],

         [[1.0684]],

         [[0.7962]],

         [[0.2661]],

         [[0.5087]],

         [[1.0502]]]])
co_out = tensor([[[[0.6126]],

         [[1.2848]],

         [[1.0160]],

         [[1.2694]],

         [[1.4213]],

        ...6793]],

         [[2.2943]],

         [[1.2602]],

         [[1.3874]],

         [[1.4820]],

         [[2.2083]]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[[0.6126]],
E           
E                    [[0.8846]],
E           
E                    [[0.2049]],
E           
E                    [[0.2484]],
E           
E                    [[0.4238]],
E           
E                    [[0.7505]],
E           
E                    [[0.6065]],
E           
E                    [[1.0128]],
E           
E                    [[0.5720]],
E           
E                    [[0.7487]],
E           
E                    [[0.4653]],
E           
E                    [[0.5181]],
E           
E                    [[0.1387]],
E           
E                    [[0.2852]],
E           
E                    [[0.4103]],
E           
E                    [[0.6349]],
E           
E                    [[0.8141]],
E           
E                    [[0.9164]],
E           
E                    [[0.2774]],
E           
E                    [[0.3987]],
E           
E                    [[0.7980]],
E           
E                    [[1.0316]],
E           
E                    [[0.5135]],
E           
E                    [[0.9905]],
E           
E                    [[0.5358]],
E           
E                    [[0.6693]],
E           
E                    [[1.0691]],
E           
E                    [[0.1525]],
E           
E                    [[0.3016]],
E           
E                    [[0.4898]],
E           
E                    [[0.4215]],
E           
E                    [[1.0484]],
E           
E                    [[0.2923]],
E           
E                    [[0.3862]],
E           
E                    [[0.2671]],
E           
E                    [[0.1481]],
E           
E                    [[0.3245]],
E           
E                    [[1.0462]],
E           
E                    [[0.8395]],
E           
E                    [[0.8587]],
E           
E                    [[0.6427]],
E           
E                    [[0.3600]],
E           
E                    [[0.7010]],
E           
E                    [[0.1495]],
E           
E                    [[0.2551]],
E           
E                    [[0.3586]],
E           
E                    [[0.9319]],
E           
E                    [[0.9095]],
E           
E                    [[0.3946]],
E           
E                    [[0.5983]],
E           
E                    [[0.9362]],
E           
E                    [[1.1134]],
E           
E                    [[0.8148]],
E           
E                    [[0.6839]],
E           
E                    [[0.9516]],
E           
E                    [[0.3220]],
E           
E                    [[0.7096]],
E           
E                    [[0.2287]],
E           
E                    [[0.2698]],
E           
E                    [[0.3581]],
E           
E                    [[0.8426]],
E           
E                    [[0.8175]],
E           
E                    [[0.3202]],
E           
E                    [[0.7674]],
E           
E                    [[0.8909]],
E           
E                    [[0.5533]],
E           
E                    [[0.6355]],
E           
E                    [[0.7322]],
E           
E                    [[0.9266]],
E           
E                    [[1.0965]],
E           
E                    [[0.2311]],
E           
E                    [[0.4331]],
E           
E                    [[0.8129]],
E           
E                    [[1.0307]],
E           
E                    [[1.0515]],
E           
E                    [[1.0576]],
E           
E                    [[0.7159]],
E           
E                    [[0.1816]],
E           
E                    [[0.6624]],
E           
E                    [[0.3036]],
E           
E                    [[0.1504]],
E           
E                    [[1.0606]],
E           
E                    [[0.9966]],
E           
E                    [[0.1176]],
E           
E                    [[0.7100]],
E           
E                    [[0.5322]],
E           
E                    [[0.5341]],
E           
E                    [[0.3875]],
E           
E                    [[0.8087]],
E           
E                    [[0.3202]],
E           
E                    [[0.7997]],
E           
E                    [[0.8692]],
E           
E                    [[0.9743]],
E           
E                    [[0.8033]],
E           
E                    [[0.1215]],
E           
E                    [[0.2920]],
E           
E                    [[0.8660]],
E           
E                    [[0.7210]],
E           
E                    [[0.2263]],
E           
E                    [[0.3285]],
E           
E                    [[1.0868]],
E           
E                    [[0.9533]],
E           
E                    [[0.3984]],
E           
E                    [[0.4905]],
E           
E                    [[0.1401]],
E           
E                    [[0.6074]],
E           
E                    [[0.2399]],
E           
E                    [[0.2307]],
E           
E                    [[0.5888]],
E           
E                    [[0.6915]],
E           
E                    [[0.4116]],
E           
E                    [[0.9131]],
E           
E                    [[0.3121]],
E           
E                    [[1.0701]],
E           
E                    [[0.9590]],
E           
E                    [[0.1947]],
E           
E                    [[0.4919]],
E           
E                    [[0.6389]],
E           
E                    [[0.6893]],
E           
E                    [[0.7350]],
E           
E                    [[0.8126]],
E           
E                    [[0.6463]],
E           
E                    [[0.3724]],
E           
E                    [[0.8530]],
E           
E                    [[0.1368]],
E           
E                    [[0.3200]],
E           
E                    [[0.4912]],
E           
E                    [[0.3728]],
E           
E                    [[0.4415]],
E           
E                    [[0.2066]],
E           
E                    [[0.5100]],
E           
E                    [[0.7233]],
E           
E                    [[0.2906]],
E           
E                    [[0.5907]],
E           
E                    [[0.9743]],
E           
E                    [[0.5650]],
E           
E                    [[0.6303]],
E           
E                    [[0.5732]],
E           
E                    [[0.7176]],
E           
E                    [[0.9343]],
E           
E                    [[1.0900]],
E           
E                    [[0.9339]],
E           
E                    [[1.0911]],
E           
E                    [[0.5802]],
E           
E                    [[0.1672]],
E           
E                    [[0.3793]],
E           
E                    [[0.9568]],
E           
E                    [[0.6131]],
E           
E                    [[0.3679]],
E           
E                    [[0.2332]],
E           
E                    [[0.1485]],
E           
E                    [[0.1944]],
E           
E                    [[0.5150]],
E           
E                    [[0.8906]],
E           
E                    [[0.8867]],
E           
E                    [[0.1342]],
E           
E                    [[0.9283]],
E           
E                    [[0.2251]],
E           
E                    [[0.5107]],
E           
E                    [[0.4136]],
E           
E                    [[0.5201]],
E           
E                    [[0.5182]],
E           
E                    [[0.1677]],
E           
E                    [[0.1847]],
E           
E                    [[0.5381]],
E           
E                    [[0.6228]],
E           
E                    [[0.3892]],
E           
E                    [[0.8047]],
E           
E                    [[0.1664]],
E           
E                    [[0.5826]],
E           
E                    [[1.0561]],
E           
E                    [[0.4124]],
E           
E                    [[1.0679]],
E           
E                    [[0.7975]],
E           
E                    [[0.1652]],
E           
E                    [[0.9327]],
E           
E                    [[0.5587]],
E           
E                    [[0.3932]],
E           
E                    [[1.0162]],
E           
E                    [[0.2123]],
E           
E                    [[0.6700]],
E           
E                    [[0.5117]],
E           
E                    [[0.9734]],
E           
E                    [[0.7560]],
E           
E                    [[0.8566]],
E           
E                    [[0.7930]],
E           
E                    [[0.4961]],
E           
E                    [[0.5112]],
E           
E                    [[0.2043]],
E           
E                    [[0.8873]],
E           
E                    [[1.0134]],
E           
E                    [[0.9585]],
E           
E                    [[0.2637]],
E           
E                    [[0.6387]],
E           
E                    [[0.2639]],
E           
E                    [[0.3411]],
E           
E                    [[0.3250]],
E           
E                    [[0.7873]],
E           
E                    [[0.3184]],
E           
E                    [[0.6055]],
E           
E                    [[0.6374]],
E           
E                    [[0.9387]],
E           
E                    [[0.2384]],
E           
E                    [[0.2731]],
E           
E                    [[0.3261]],
E           
E                    [[0.9663]],
E           
E                    [[0.4367]],
E           
E                    [[1.0381]],
E           
E                    [[0.7972]],
E           
E                    [[0.6797]],
E           
E                    [[0.6127]],
E           
E                    [[0.5175]],
E           
E                    [[0.6791]],
E           
E                    [[0.5022]],
E           
E                    [[0.6129]],
E           
E                    [[0.6802]],
E           
E                    [[0.2253]],
E           
E                    [[0.3543]],
E           
E                    [[1.0201]],
E           
E                    [[0.2106]],
E           
E                    [[0.5805]],
E           
E                    [[1.1110]],
E           
E                    [[0.7970]],
E           
E                    [[0.6305]],
E           
E                    [[0.1831]],
E           
E                    [[0.8641]],
E           
E                    [[0.2602]],
E           
E                    [[0.4745]],
E           
E                    [[0.4486]],
E           
E                    [[0.5423]],
E           
E                    [[0.6219]],
E           
E                    [[1.0288]],
E           
E                    [[0.6788]],
E           
E                    [[1.0642]],
E           
E                    [[0.9222]],
E           
E                    [[0.3003]],
E           
E                    [[0.8406]],
E           
E                    [[0.2629]],
E           
E                    [[0.4045]],
E           
E                    [[0.7634]],
E           
E                    [[0.7815]],
E           
E                    [[0.9915]],
E           
E                    [[0.4554]],
E           
E                    [[0.6172]],
E           
E                    [[0.8738]],
E           
E                    [[0.1328]],
E           
E                    [[0.9779]],
E           
E                    [[0.2029]],
E           
E                    [[0.6233]],
E           
E                    [[0.5314]],
E           
E                    [[0.3530]],
E           
E                    [[0.6825]],
E           
E                    [[1.0298]],
E           
E                    [[0.4702]],
E           
E                    [[0.3195]],
E           
E                    [[0.4315]],
E           
E                    [[0.1208]],
E           
E                    [[0.8421]],
E           
E                    [[0.3763]],
E           
E                    [[0.2827]],
E           
E                    [[0.3283]],
E           
E                    [[0.9039]],
E           
E                    [[0.8812]],
E           
E                    [[1.0001]],
E           
E                    [[0.7977]],
E           
E                    [[0.4494]],
E           
E                    [[0.4767]],
E           
E                    [[0.7641]],
E           
E                    [[1.0274]],
E           
E                    [[0.7523]],
E           
E                    [[0.3798]],
E           
E                    [[0.3813]],
E           
E                    [[0.1436]],
E           
E                    [[0.7244]],
E           
E                    [[0.3358]],
E           
E                    [[0.1706]],
E           
E                    [[1.0548]],
E           
E                    [[0.2917]],
E           
E                    [[0.5595]],
E           
E                    [[0.7596]],
E           
E                    [[0.6323]],
E           
E                    [[0.2799]],
E           
E                    [[0.2122]],
E           
E                    [[1.0149]],
E           
E                    [[0.6978]],
E           
E                    [[1.0312]],
E           
E                    [[0.4488]],
E           
E                    [[0.7637]],
E           
E                    [[0.5020]],
E           
E                    [[0.5941]],
E           
E                    [[0.3119]],
E           
E                    [[0.7855]],
E           
E                    [[0.7745]],
E           
E                    [[0.6061]],
E           
E                    [[0.5039]],
E           
E                    [[0.3082]],
E           
E                    [[0.9622]],
E           
E                    [[0.2442]],
E           
E                    [[0.8212]],
E           
E                    [[0.4483]],
E           
E                    [[0.3751]],
E           
E                    [[0.7062]],
E           
E                    [[0.3567]],
E           
E                    [[0.7316]],
E           
E                    [[0.7146]],
E           
E                    [[0.2451]],
E           
E                    [[0.6996]],
E           
E                    [[0.8293]],
E           
E                    [[0.8143]],
E           
E                    [[0.5534]],
E           
E                    [[0.2065]],
E           
E                    [[0.5393]],
E           
E                    [[0.7900]],
E           
E                    [[0.4339]],
E           
E                    [[0.8062]],
E           
E                    [[0.9494]],
E           
E                    [[0.3553]],
E           
E                    [[0.6213]],
E           
E                    [[0.8231]],
E           
E                    [[0.6556]],
E           
E                    [[0.6581]],
E           
E                    [[0.6788]],
E           
E                    [[0.2233]],
E           
E                    [[0.6557]],
E           
E                    [[0.9626]],
E           
E                    [[1.0669]],
E           
E                    [[0.9103]],
E           
E                    [[0.6834]],
E           
E                    [[0.8499]],
E           
E                    [[0.3731]],
E           
E                    [[0.2020]],
E           
E                    [[0.1864]],
E           
E                    [[1.1152]],
E           
E                    [[0.9338]],
E           
E                    [[0.2708]],
E           
E                    [[0.8120]],
E           
E                    [[0.9940]],
E           
E                    [[1.1162]],
E           
E                    [[1.0536]],
E           
E                    [[1.0038]],
E           
E                    [[0.5018]],
E           
E                    [[0.4409]],
E           
E                    [[1.0269]],
E           
E                    [[0.8966]],
E           
E                    [[0.3155]],
E           
E                    [[1.0659]],
E           
E                    [[0.8580]],
E           
E                    [[0.8890]],
E           
E                    [[0.3030]],
E           
E                    [[0.7598]],
E           
E                    [[0.4411]],
E           
E                    [[1.0071]],
E           
E                    [[0.5264]],
E           
E                    [[0.8110]],
E           
E                    [[0.7052]],
E           
E                    [[0.8291]],
E           
E                    [[0.4465]],
E           
E                    [[0.8602]],
E           
E                    [[0.2671]],
E           
E                    [[0.7293]],
E           
E                    [[0.2781]],
E           
E                    [[0.1231]],
E           
E                    [[0.2149]],
E           
E                    [[1.0111]],
E           
E                    [[0.8869]],
E           
E                    [[1.0855]],
E           
E                    [[1.0169]],
E           
E                    [[0.1699]],
E           
E                    [[0.2752]],
E           
E                    [[0.5356]],
E           
E                    [[0.2917]],
E           
E                    [[0.9636]],
E           
E                    [[0.2384]],
E           
E                    [[0.3724]],
E           
E                    [[0.1333]],
E           
E                    [[0.3325]],
E           
E                    [[1.0276]],
E           
E                    [[1.0258]],
E           
E                    [[0.9743]],
E           
E                    [[1.0024]],
E           
E                    [[1.0610]],
E           
E                    [[0.4884]],
E           
E                    [[0.8364]],
E           
E                    [[1.0618]],
E           
E                    [[0.7818]],
E           
E                    [[1.1162]],
E           
E                    [[0.8757]],
E           
E                    [[0.9272]],
E           
E                    [[0.4414]],
E           
E                    [[0.8563]],
E           
E                    [[0.6738]],
E           
E                    [[0.4970]],
E           
E                    [[0.3345]],
E           
E                    [[0.3358]],
E           
E                    [[0.2316]],
E           
E                    [[0.9520]],
E           
E                    [[0.9718]],
E           
E                    [[0.5595]],
E           
E                    [[0.3270]],
E           
E                    [[1.0028]],
E           
E                    [[0.9361]],
E           
E                    [[0.6535]],
E           
E                    [[0.3803]],
E           
E                    [[1.0759]],
E           
E                    [[0.8209]],
E           
E                    [[0.2368]],
E           
E                    [[1.0949]],
E           
E                    [[0.9961]],
E           
E                    [[0.4341]],
E           
E                    [[0.8975]],
E           
E                    [[0.3323]],
E           
E                    [[0.5380]],
E           
E                    [[1.0409]],
E           
E                    [[0.6370]],
E           
E                    [[0.2628]],
E           
E                    [[0.4493]],
E           
E                    [[0.4807]],
E           
E                    [[0.5199]],
E           
E                    [[0.6642]],
E           
E                    [[1.0788]],
E           
E                    [[0.6432]],
E           
E                    [[0.3077]],
E           
E                    [[0.6420]],
E           
E                    [[0.8561]],
E           
E                    [[0.8644]],
E           
E                    [[0.1594]],
E           
E                    [[0.5269]],
E           
E                    [[0.2448]],
E           
E                    [[0.4030]],
E           
E                    [[0.7965]],
E           
E                    [[0.2613]],
E           
E                    [[0.8022]],
E           
E                    [[1.0408]],
E           
E                    [[0.6492]],
E           
E                    [[0.2831]],
E           
E                    [[0.4372]],
E           
E                    [[0.7256]],
E           
E                    [[0.2352]],
E           
E                    [[0.8648]],
E           
E                    [[0.1624]],
E           
E                    [[0.1357]],
E           
E                    [[0.1306]],
E           
E                    [[0.5150]],
E           
E                    [[0.9526]],
E           
E                    [[0.1431]],
E           
E                    [[1.0320]],
E           
E                    [[0.4164]],
E           
E                    [[0.7628]],
E           
E                    [[0.6392]],
E           
E                    [[0.1655]],
E           
E                    [[1.0310]],
E           
E                    [[0.8856]],
E           
E                    [[1.1134]],
E           
E                    [[0.8690]],
E           
E                    [[0.2863]],
E           
E                    [[1.0337]],
E           
E                    [[0.6433]],
E           
E                    [[0.8535]],
E           
E                    [[0.2155]],
E           
E                    [[0.4726]],
E           
E                    [[0.1254]],
E           
E                    [[0.4216]],
E           
E                    [[0.7242]],
E           
E                    [[0.2238]],
E           
E                    [[0.7758]],
E           
E                    [[0.8848]],
E           
E                    [[0.6860]],
E           
E                    [[0.2818]],
E           
E                    [[0.2287]],
E           
E                    [[0.4621]],
E           
E                    [[0.8359]],
E           
E                    [[1.1096]],
E           
E                    [[0.9039]],
E           
E                    [[0.5601]],
E           
E                    [[0.7917]],
E           
E                    [[0.1259]],
E           
E                    [[0.1893]],
E           
E                    [[0.8497]],
E           
E                    [[0.3332]],
E           
E                    [[0.8569]],
E           
E                    [[0.2634]],
E           
E                    [[0.3687]],
E           
E                    [[0.2045]],
E           
E                    [[0.8773]],
E           
E                    [[0.5654]],
E           
E                    [[1.0012]],
E           
E                    [[0.9258]],
E           
E                    [[0.8931]],
E           
E                    [[0.6325]],
E           
E                    [[0.4618]],
E           
E                    [[0.5077]],
E           
E                    [[0.6828]],
E           
E                    [[0.8642]],
E           
E                    [[0.2661]],
E           
E                    [[1.0360]],
E           
E                    [[0.5620]],
E           
E                    [[0.1974]],
E           
E                    [[0.3459]],
E           
E                    [[1.0588]],
E           
E                    [[1.0736]],
E           
E                    [[0.1532]],
E           
E                    [[0.9690]],
E           
E                    [[0.8670]],
E           
E                    [[0.9123]],
E           
E                    [[1.0396]],
E           
E                    [[0.3469]],
E           
E                    [[0.7743]],
E           
E                    [[0.8210]],
E           
E                    [[0.4686]],
E           
E                    [[0.7837]],
E           
E                    [[0.4725]],
E           
E                    [[0.9255]],
E           
E                    [[0.4777]],
E           
E                    [[0.4300]],
E           
E                    [[0.7423]],
E           
E                    [[0.7937]],
E           
E                    [[0.3721]],
E           
E                    [[0.6606]],
E           
E                    [[0.9062]],
E           
E                    [[0.5666]],
E           
E                    [[0.7685]],
E           
E                    [[0.4958]],
E           
E                    [[0.7916]],
E           
E                    [[0.2542]],
E           
E                    [[0.3224]],
E           
E                    [[0.3626]],
E           
E                    [[1.0759]],
E           
E                    [[0.4818]],
E           
E                    [[0.6150]],
E           
E                    [[0.3741]],
E           
E                    [[1.1155]],
E           
E                    [[1.1047]],
E           
E                    [[0.2393]],
E           
E                    [[0.2110]],
E           
E                    [[0.2374]],
E           
E                    [[0.6140]],
E           
E                    [[0.4889]],
E           
E                    [[0.2891]],
E           
E                    [[0.4370]],
E           
E                    [[0.7108]],
E           
E                    [[0.3551]],
E           
E                    [[0.7272]],
E           
E                    [[0.5017]],
E           
E                    [[0.3741]],
E           
E                    [[0.6851]],
E           
E                    [[1.0275]],
E           
E                    [[0.2783]],
E           
E                    [[0.6396]],
E           
E                    [[0.4320]],
E           
E                    [[1.1070]],
E           
E                    [[0.1420]],
E           
E                    [[0.1371]],
E           
E                    [[1.1091]],
E           
E                    [[0.3000]],
E           
E                    [[0.7122]],
E           
E                    [[0.5732]],
E           
E                    [[0.5111]],
E           
E                    [[0.5047]],
E           
E                    [[0.9341]],
E           
E                    [[0.6403]],
E           
E                    [[0.1296]],
E           
E                    [[0.3212]],
E           
E                    [[0.4459]],
E           
E                    [[0.8680]],
E           
E                    [[0.2928]],
E           
E                    [[1.0878]],
E           
E                    [[0.5050]],
E           
E                    [[0.5266]],
E           
E                    [[1.0082]],
E           
E                    [[0.8677]],
E           
E                    [[1.0404]],
E           
E                    [[0.9056]],
E           
E                    [[0.4647]],
E           
E                    [[0.2846]],
E           
E                    [[0.5792]],
E           
E                    [[1.0302]],
E           
E                    [[0.4486]],
E           
E                    [[0.1527]],
E           
E                    [[0.8213]],
E           
E                    [[1.1031]],
E           
E                    [[0.4740]],
E           
E                    [[0.2024]],
E           
E                    [[0.1629]],
E           
E                    [[0.7417]],
E           
E                    [[0.5785]],
E           
E                    [[0.3639]],
E           
E                    [[0.7174]],
E           
E                    [[0.8063]],
E           
E                    [[1.0140]],
E           
E                    [[1.0046]],
E           
E                    [[0.5415]],
E           
E                    [[0.1755]],
E           
E                    [[0.1646]],
E           
E                    [[1.0832]],
E           
E                    [[0.8374]],
E           
E                    [[0.8343]],
E           
E                    [[0.1838]],
E           
E                    [[1.0794]],
E           
E                    [[1.0901]],
E           
E                    [[1.0678]],
E           
E                    [[0.1946]],
E           
E                    [[0.4277]],
E           
E                    [[0.2725]],
E           
E                    [[1.0899]],
E           
E                    [[0.4015]],
E           
E                    [[0.3881]],
E           
E                    [[0.8783]],
E           
E                    [[0.3851]],
E           
E                    [[0.3701]],
E           
E                    [[0.5726]],
E           
E                    [[0.5683]],
E           
E                    [[0.2269]],
E           
E                    [[1.0332]],
E           
E                    [[0.3958]],
E           
E                    [[0.7937]],
E           
E                    [[1.0513]],
E           
E                    [[0.8685]],
E           
E                    [[0.6872]],
E           
E                    [[1.0418]],
E           
E                    [[0.6836]],
E           
E                    [[0.3851]],
E           
E                    [[1.0894]],
E           
E                    [[0.7347]],
E           
E                    [[0.1285]],
E           
E                    [[0.4740]],
E           
E                    [[0.2758]],
E           
E                    [[1.0548]],
E           
E                    [[0.5338]],
E           
E                    [[0.1606]],
E           
E                    [[0.5850]],
E           
E                    [[0.9304]],
E           
E                    [[0.7463]],
E           
E                    [[0.7745]],
E           
E                    [[0.6628]],
E           
E                    [[0.8028]],
E           
E                    [[0.4946]],
E           
E                    [[0.4175]],
E           
E                    [[0.1490]],
E           
E                    [[0.2397]],
E           
E                    [[0.8331]],
E           
E                    [[0.3203]],
E           
E                    [[0.6881]],
E           
E                    [[0.7760]],
E           
E                    [[0.6518]],
E           
E                    [[0.2922]],
E           
E                    [[1.0945]],
E           
E                    [[0.3256]],
E           
E                    [[1.0276]],
E           
E                    [[0.2186]],
E           
E                    [[0.4961]],
E           
E                    [[0.8884]],
E           
E                    [[0.4121]],
E           
E                    [[1.0364]],
E           
E                    [[0.2723]],
E           
E                    [[0.1965]],
E           
E                    [[0.3909]],
E           
E                    [[0.6972]],
E           
E                    [[1.0768]],
E           
E                    [[0.3777]],
E           
E                    [[0.7952]],
E           
E                    [[0.4910]],
E           
E                    [[0.5080]],
E           
E                    [[0.9840]],
E           
E                    [[0.2289]],
E           
E                    [[0.6695]],
E           
E                    [[1.0866]],
E           
E                    [[0.5477]],
E           
E                    [[1.0046]],
E           
E                    [[0.4624]],
E           
E                    [[1.0189]],
E           
E                    [[0.1327]],
E           
E                    [[0.5443]],
E           
E                    [[0.5286]],
E           
E                    [[0.7784]],
E           
E                    [[0.8125]],
E           
E                    [[1.0003]],
E           
E                    [[0.5419]],
E           
E                    [[0.5966]],
E           
E                    [[0.9588]],
E           
E                    [[0.4811]],
E           
E                    [[1.0547]],
E           
E                    [[0.2835]],
E           
E                    [[0.5623]],
E           
E                    [[0.5895]],
E           
E                    [[0.8395]],
E           
E                    [[0.9582]],
E           
E                    [[0.5371]],
E           
E                    [[0.2021]],
E           
E                    [[0.8641]],
E           
E                    [[0.7659]],
E           
E                    [[0.8172]],
E           
E                    [[0.3079]],
E           
E                    [[0.9382]],
E           
E                    [[1.0900]],
E           
E                    [[0.6598]],
E           
E                    [[0.1494]],
E           
E                    [[0.9674]],
E           
E                    [[0.2457]],
E           
E                    [[0.7313]],
E           
E                    [[0.6890]],
E           
E                    [[0.3824]],
E           
E                    [[0.7905]],
E           
E                    [[0.1692]],
E           
E                    [[0.7303]],
E           
E                    [[0.2994]],
E           
E                    [[0.5623]],
E           
E                    [[0.6807]],
E           
E                    [[1.0424]],
E           
E                    [[0.3778]],
E           
E                    [[0.9367]],
E           
E                    [[0.5529]],
E           
E                    [[0.3789]],
E           
E                    [[0.1810]],
E           
E                    [[0.1576]],
E           
E                    [[1.1047]],
E           
E                    [[0.4917]],
E           
E                    [[0.6414]],
E           
E                    [[0.7519]],
E           
E                    [[0.9562]],
E           
E                    [[1.0431]],
E           
E                    [[1.0219]],
E           
E                    [[0.2459]],
E           
E                    [[0.5363]],
E           
E                    [[0.3205]],
E           
E                    [[0.3307]],
E           
E                    [[0.7350]],
E           
E                    [[1.0857]],
E           
E                    [[0.2158]],
E           
E                    [[0.9190]],
E           
E                    [[0.3571]],
E           
E                    [[0.5190]],
E           
E                    [[1.0133]],
E           
E                    [[0.5033]],
E           
E                    [[0.6619]],
E           
E                    [[0.2669]],
E           
E                    [[1.0420]],
E           
E                    [[0.5517]],
E           
E                    [[0.2507]],
E           
E                    [[0.7628]],
E           
E                    [[0.2609]],
E           
E                    [[0.2196]],
E           
E                    [[0.6468]],
E           
E                    [[1.0128]],
E           
E                    [[0.4749]],
E           
E                    [[0.8517]],
E           
E                    [[1.0460]],
E           
E                    [[0.9480]],
E           
E                    [[0.3541]],
E           
E                    [[0.5616]],
E           
E                    [[0.4590]],
E           
E                    [[0.2143]],
E           
E                    [[0.6166]],
E           
E                    [[0.9926]],
E           
E                    [[1.0376]],
E           
E                    [[0.6630]],
E           
E                    [[0.7299]],
E           
E                    [[0.3999]],
E           
E                    [[0.9938]],
E           
E                    [[0.4083]],
E           
E                    [[0.2691]],
E           
E                    [[0.6934]],
E           
E                    [[0.9161]],
E           
E                    [[0.1656]],
E           
E                    [[1.0684]],
E           
E                    [[0.7962]],
E           
E                    [[0.2661]],
E           
E                    [[0.5087]],
E           
E                    [[1.0502]]]]), compiled_model=tensor([[[[0.6126]],
E           
E                    [[1.2848]],
E           
E                    [[1.0160]],
E           
E                    [[1.2694]],
E           
E                    [[1.4213]],
E           
E                    [[2.3958]],
E           
E                    [[1.8068]],
E           
E                    [[1.6497]],
E           
E                    [[1.5160]],
E           
E                    [[1.3800]],
E           
E                    [[1.3065]],
E           
E                    [[1.6005]],
E           
E                    [[1.6513]],
E           
E                    [[1.9601]],
E           
E                    [[1.6164]],
E           
E                    [[1.6097]],
E           
E                    [[1.9246]],
E           
E                    [[1.3664]],
E           
E                    [[1.8692]],
E           
E                    [[0.6697]],
E           
E                    [[2.0294]],
E           
E                    [[1.4288]],
E           
E                    [[1.3829]],
E           
E                    [[1.8493]],
E           
E                    [[1.9277]],
E           
E                    [[1.3387]],
E           
E                    [[1.2251]],
E           
E                    [[1.0213]],
E           
E                    [[0.8859]],
E           
E                    [[0.9770]],
E           
E                    [[0.9892]],
E           
E                    [[1.8138]],
E           
E                    [[0.2374]],
E           
E                    [[0.6005]],
E           
E                    [[0.9480]],
E           
E                    [[0.7636]],
E           
E                    [[0.5917]],
E           
E                    [[1.1473]],
E           
E                    [[0.7865]],
E           
E                    [[1.2318]],
E           
E                    [[1.1798]],
E           
E                    [[0.4441]],
E           
E                    [[1.2248]],
E           
E                    [[0.0906]],
E           
E                    [[1.0227]],
E           
E                    [[1.1868]],
E           
E                    [[1.3895]],
E           
E                    [[0.9885]],
E           
E                    [[1.0885]],
E           
E                    [[1.2370]],
E           
E                    [[1.3197]],
E           
E                    [[1.7293]],
E           
E                    [[0.7099]],
E           
E                    [[1.0727]],
E           
E                    [[1.4802]],
E           
E                    [[0.2418]],
E           
E                    [[1.2931]],
E           
E                    [[0.1234]],
E           
E                    [[0.2045]],
E           
E                    [[1.1550]],
E           
E                    [[1.1481]],
E           
E                    [[0.8601]],
E           
E                    [[0.3194]],
E           
E                    [[1.0265]],
E           
E                    [[1.6777]],
E           
E                    [[1.4126]],
E           
E                    [[1.2075]],
E           
E                    [[1.5906]],
E           
E                    [[1.7955]],
E           
E                    [[1.6138]],
E           
E                    [[0.8287]],
E           
E                    [[0.7832]],
E           
E                    [[1.5611]],
E           
E                    [[1.1540]],
E           
E                    [[1.4845]],
E           
E                    [[0.9444]],
E           
E                    [[1.4038]],
E           
E                    [[0.2444]],
E           
E                    [[1.0907]],
E           
E                    [[0.7321]],
E           
E                    [[0.9338]],
E           
E                    [[1.4633]],
E           
E                    [[1.4846]],
E           
E                    [[0.9817]],
E           
E                    [[0.8220]],
E           
E                    [[0.5517]],
E           
E                    [[0.4593]],
E           
E                    [[1.1572]],
E           
E                    [[1.1279]],
E           
E                    [[0.8503]],
E           
E                    [[1.1452]],
E           
E                    [[1.2103]],
E           
E                    [[1.4099]],
E           
E                    [[1.3334]],
E           
E                    [[0.5659]],
E           
E                    [[0.9579]],
E           
E                    [[1.2076]],
E           
E                    [[0.8140]],
E           
E                    [[0.4364]],
E           
E                    [[0.4326]],
E           
E                    [[1.3254]],
E           
E                    [[1.5006]],
E           
E                    [[1.0986]],
E           
E                    [[1.2798]],
E           
E                    [[0.1399]],
E           
E                    [[1.0973]],
E           
E                    [[0.5150]],
E           
E                    [[0.4405]],
E           
E                    [[0.7021]],
E           
E                    [[0.7749]],
E           
E                    [[0.3826]],
E           
E                    [[1.3529]],
E           
E                    [[0.5807]],
E           
E                    [[1.3827]],
E           
E                    [[1.0387]],
E           
E                    [[1.0401]],
E           
E                    [[1.1456]],
E           
E                    [[0.9159]],
E           
E                    [[1.1292]],
E           
E                    [[1.1570]],
E           
E                    [[0.8227]],
E           
E                    [[0.9625]],
E           
E                    [[0.4529]],
E           
E                    [[1.6120]],
E           
E                    [[0.3370]],
E           
E                    [[0.8798]],
E           
E                    [[0.8990]],
E           
E                    [[0.9069]],
E           
E                    [[1.1384]],
E           
E                    [[0.4043]],
E           
E                    [[1.1263]],
E           
E                    [[1.6357]],
E           
E                    [[0.2014]],
E           
E                    [[1.0763]],
E           
E                    [[1.7242]],
E           
E                    [[1.3095]],
E           
E                    [[0.8056]],
E           
E                    [[0.6268]],
E           
E                    [[0.8594]],
E           
E                    [[1.1548]],
E           
E                    [[1.3673]],
E           
E                    [[1.2529]],
E           
E                    [[1.3709]],
E           
E                    [[0.8524]],
E           
E                    [[0.3360]],
E           
E                    [[0.9610]],
E           
E                    [[1.6263]],
E           
E                    [[1.1979]],
E           
E                    [[1.0936]],
E           
E                    [[0.8229]],
E           
E                    [[0.1400]],
E           
E                    [[0.1710]],
E           
E                    [[1.3183]],
E           
E                    [[0.9412]],
E           
E                    [[1.1481]],
E           
E                    [[0.1308]],
E           
E                    [[1.6401]],
E           
E                    [[0.4380]],
E           
E                    [[0.8501]],
E           
E                    [[0.6224]],
E           
E                    [[1.3691]],
E           
E                    [[0.9949]],
E           
E                    [[0.9480]],
E           
E                    [[0.5096]],
E           
E                    [[0.6035]],
E           
E                    [[1.3836]],
E           
E                    [[0.5854]],
E           
E                    [[1.1615]],
E           
E                    [[0.4958]],
E           
E                    [[1.3817]],
E           
E                    [[1.2827]],
E           
E                    [[0.5330]],
E           
E                    [[1.7376]],
E           
E                    [[0.6885]],
E           
E                    [[0.6305]],
E           
E                    [[1.0935]],
E           
E                    [[0.9451]],
E           
E                    [[0.9119]],
E           
E                    [[1.4459]],
E           
E                    [[0.1576]],
E           
E                    [[1.1332]],
E           
E                    [[0.4227]],
E           
E                    [[1.6680]],
E           
E                    [[1.2446]],
E           
E                    [[1.4015]],
E           
E                    [[1.3785]],
E           
E                    [[0.8574]],
E           
E                    [[0.6743]],
E           
E                    [[1.0355]],
E           
E                    [[1.4556]],
E           
E                    [[1.5962]],
E           
E                    [[1.2893]],
E           
E                    [[0.7187]],
E           
E                    [[0.8241]],
E           
E                    [[0.6641]],
E           
E                    [[0.2641]],
E           
E                    [[0.5556]],
E           
E                    [[1.2640]],
E           
E                    [[1.0477]],
E           
E                    [[1.3508]],
E           
E                    [[1.2026]],
E           
E                    [[1.1886]],
E           
E                    [[0.6963]],
E           
E                    [[0.9974]],
E           
E                    [[0.5141]],
E           
E                    [[1.0149]],
E           
E                    [[1.0223]],
E           
E                    [[1.0912]],
E           
E                    [[1.3983]],
E           
E                    [[0.8444]],
E           
E                    [[0.8843]],
E           
E                    [[1.1670]],
E           
E                    [[0.6696]],
E           
E                    [[1.3738]],
E           
E                    [[1.0526]],
E           
E                    [[1.2752]],
E           
E                    [[0.3498]],
E           
E                    [[1.0497]],
E           
E                    [[1.2026]],
E           
E                    [[0.3160]],
E           
E                    [[1.1349]],
E           
E                    [[1.4383]],
E           
E                    [[1.6453]],
E           
E                    [[1.3276]],
E           
E                    [[0.2614]],
E           
E                    [[1.5299]],
E           
E                    [[0.2603]],
E           
E                    [[0.6403]],
E           
E                    [[0.4558]],
E           
E                    [[0.9367]],
E           
E                    [[1.3269]],
E           
E                    [[1.8576]],
E           
E                    [[0.6303]],
E           
E                    [[1.4144]],
E           
E                    [[1.6265]],
E           
E                    [[0.7495]],
E           
E                    [[0.7885]],
E           
E                    [[1.0388]],
E           
E                    [[0.9865]],
E           
E                    [[1.3551]],
E           
E                    [[1.5915]],
E           
E                    [[1.2005]],
E           
E                    [[0.8924]],
E           
E                    [[1.2920]],
E           
E                    [[1.6775]],
E           
E                    [[0.8823]],
E           
E                    [[1.4878]],
E           
E                    [[0.1983]],
E           
E                    [[1.4544]],
E           
E                    [[0.7748]],
E           
E                    [[0.2464]],
E           
E                    [[1.3077]],
E           
E                    [[1.4468]],
E           
E                    [[1.0747]],
E           
E                    [[0.6312]],
E           
E                    [[0.7790]],
E           
E                    [[0.9196]],
E           
E                    [[1.1931]],
E           
E                    [[1.2566]],
E           
E                    [[0.6364]],
E           
E                    [[0.8211]],
E           
E                    [[1.3929]],
E           
E                    [[1.4142]],
E           
E                    [[1.6697]],
E           
E                    [[1.5049]],
E           
E                    [[1.1232]],
E           
E                    [[1.0635]],
E           
E                    [[1.4802]],
E           
E                    [[1.2590]],
E           
E                    [[0.7796]],
E           
E                    [[0.4875]],
E           
E                    [[0.8763]],
E           
E                    [[0.4816]],
E           
E                    [[1.3006]],
E           
E                    [[0.7318]],
E           
E                    [[0.8392]],
E           
E                    [[1.7960]],
E           
E                    [[1.3755]],
E           
E                    [[0.6008]],
E           
E                    [[1.4453]],
E           
E                    [[0.9797]],
E           
E                    [[1.0866]],
E           
E                    [[1.0618]],
E           
E                    [[2.0797]],
E           
E                    [[1.6812]],
E           
E                    [[2.5374]],
E           
E                    [[1.4114]],
E           
E                    [[1.3509]],
E           
E                    [[0.5059]],
E           
E                    [[0.8936]],
E           
E                    [[0.7964]],
E           
E                    [[1.8690]],
E           
E                    [[2.1023]],
E           
E                    [[1.8946]],
E           
E                    [[1.0272]],
E           
E                    [[0.9288]],
E           
E                    [[1.8206]],
E           
E                    [[1.4754]],
E           
E                    [[1.3074]],
E           
E                    [[2.0077]],
E           
E                    [[1.1789]],
E           
E                    [[2.2261]],
E           
E                    [[1.3041]],
E           
E                    [[1.4190]],
E           
E                    [[1.3649]],
E           
E                    [[1.8771]],
E           
E                    [[1.8186]],
E           
E                    [[3.4382]],
E           
E                    [[2.2413]],
E           
E                    [[2.0677]],
E           
E                    [[0.9465]],
E           
E                    [[1.2515]],
E           
E                    [[0.9109]],
E           
E                    [[1.9000]],
E           
E                    [[2.4696]],
E           
E                    [[2.2930]],
E           
E                    [[2.2815]],
E           
E                    [[1.5966]],
E           
E                    [[2.3724]],
E           
E                    [[0.8604]],
E           
E                    [[1.5051]],
E           
E                    [[2.4747]],
E           
E                    [[1.3839]],
E           
E                    [[2.6422]],
E           
E                    [[1.9355]],
E           
E                    [[2.6077]],
E           
E                    [[3.5365]],
E           
E                    [[2.5946]],
E           
E                    [[2.4315]],
E           
E                    [[2.0030]],
E           
E                    [[2.0260]],
E           
E                    [[1.8532]],
E           
E                    [[2.0702]],
E           
E                    [[2.1804]],
E           
E                    [[1.3509]],
E           
E                    [[1.3079]],
E           
E                    [[1.8872]],
E           
E                    [[3.2374]],
E           
E                    [[2.5755]],
E           
E                    [[2.5748]],
E           
E                    [[1.7180]],
E           
E                    [[1.9157]],
E           
E                    [[2.1155]],
E           
E                    [[2.0252]],
E           
E                    [[2.1283]],
E           
E                    [[2.6453]],
E           
E                    [[1.8267]],
E           
E                    [[2.7580]],
E           
E                    [[1.2133]],
E           
E                    [[3.0068]],
E           
E                    [[2.4631]],
E           
E                    [[3.5406]],
E           
E                    [[2.6474]],
E           
E                    [[1.5911]],
E           
E                    [[2.0927]],
E           
E                    [[1.9897]],
E           
E                    [[1.1013]],
E           
E                    [[2.2189]],
E           
E                    [[1.8797]],
E           
E                    [[1.7149]],
E           
E                    [[1.8627]],
E           
E                    [[1.7744]],
E           
E                    [[1.2092]],
E           
E                    [[1.9356]],
E           
E                    [[3.0628]],
E           
E                    [[1.8478]],
E           
E                    [[2.9875]],
E           
E                    [[1.5559]],
E           
E                    [[1.8827]],
E           
E                    [[2.6651]],
E           
E                    [[0.9461]],
E           
E                    [[1.6017]],
E           
E                    [[1.6695]],
E           
E                    [[2.5003]],
E           
E                    [[2.0576]],
E           
E                    [[1.9773]],
E           
E                    [[2.5010]],
E           
E                    [[1.9855]],
E           
E                    [[2.6145]],
E           
E                    [[1.5627]],
E           
E                    [[1.5144]],
E           
E                    [[2.3694]],
E           
E                    [[1.9382]],
E           
E                    [[1.3083]],
E           
E                    [[1.9379]],
E           
E                    [[2.4450]],
E           
E                    [[2.2285]],
E           
E                    [[1.9401]],
E           
E                    [[1.7861]],
E           
E                    [[2.8128]],
E           
E                    [[2.4591]],
E           
E                    [[1.8723]],
E           
E                    [[2.0155]],
E           
E                    [[2.3503]],
E           
E                    [[1.1160]],
E           
E                    [[2.1577]],
E           
E                    [[3.0725]],
E           
E                    [[2.0452]],
E           
E                    [[0.6609]],
E           
E                    [[2.4660]],
E           
E                    [[2.6077]],
E           
E                    [[2.1282]],
E           
E                    [[1.7682]],
E           
E                    [[2.1097]],
E           
E                    [[1.4182]],
E           
E                    [[1.2314]],
E           
E                    [[1.5169]],
E           
E                    [[1.6490]],
E           
E                    [[1.9213]],
E           
E                    [[2.4415]],
E           
E                    [[2.2367]],
E           
E                    [[2.2775]],
E           
E                    [[2.6166]],
E           
E                    [[2.1888]],
E           
E                    [[1.9791]],
E           
E                    [[1.9199]],
E           
E                    [[2.5306]],
E           
E                    [[2.4902]],
E           
E                    [[2.8823]],
E           
E                    [[2.0688]],
E           
E                    [[1.8810]],
E           
E                    [[1.0920]],
E           
E                    [[2.3474]],
E           
E                    [[2.4195]],
E           
E                    [[1.9421]],
E           
E                    [[0.5074]],
E           
E                    [[1.7197]],
E           
E                    [[0.8028]],
E           
E                    [[1.4251]],
E           
E                    [[1.6292]],
E           
E                    [[1.6941]],
E           
E                    [[1.4418]],
E           
E                    [[2.7376]],
E           
E                    [[1.3668]],
E           
E                    [[1.7058]],
E           
E                    [[1.9953]],
E           
E                    [[2.4717]],
E           
E                    [[1.0840]],
E           
E                    [[2.1752]],
E           
E                    [[1.1282]],
E           
E                    [[1.7456]],
E           
E                    [[2.2936]],
E           
E                    [[2.1847]],
E           
E                    [[2.0868]],
E           
E                    [[0.4776]],
E           
E                    [[2.6363]],
E           
E                    [[2.3964]],
E           
E                    [[2.2233]],
E           
E                    [[2.1941]],
E           
E                    [[1.0426]],
E           
E                    [[1.0969]],
E           
E                    [[1.7524]],
E           
E                    [[2.8103]],
E           
E                    [[2.5829]],
E           
E                    [[2.1974]],
E           
E                    [[1.6278]],
E           
E                    [[1.8984]],
E           
E                    [[1.5967]],
E           
E                    [[1.8116]],
E           
E                    [[2.0388]],
E           
E                    [[1.2349]],
E           
E                    [[2.2243]],
E           
E                    [[1.9059]],
E           
E                    [[0.7112]],
E           
E                    [[1.3967]],
E           
E                    [[2.2582]],
E           
E                    [[1.9320]],
E           
E                    [[2.0975]],
E           
E                    [[0.8482]],
E           
E                    [[1.9527]],
E           
E                    [[2.3510]],
E           
E                    [[2.3400]],
E           
E                    [[2.5700]],
E           
E                    [[2.5577]],
E           
E                    [[1.8749]],
E           
E                    [[1.5995]],
E           
E                    [[1.1973]],
E           
E                    [[1.8890]],
E           
E                    [[1.2458]],
E           
E                    [[1.1657]],
E           
E                    [[1.5863]],
E           
E                    [[1.8063]],
E           
E                    [[1.9647]],
E           
E                    [[2.4828]],
E           
E                    [[2.3427]],
E           
E                    [[2.1381]],
E           
E                    [[2.0973]],
E           
E                    [[2.0794]],
E           
E                    [[2.0545]],
E           
E                    [[2.4333]],
E           
E                    [[1.9909]],
E           
E                    [[2.5594]],
E           
E                    [[1.7360]],
E           
E                    [[1.3406]],
E           
E                    [[2.4576]],
E           
E                    [[1.5924]],
E           
E                    [[0.8783]],
E           
E                    [[1.9326]],
E           
E                    [[2.5579]],
E           
E                    [[2.5777]],
E           
E                    [[0.7577]],
E           
E                    [[3.0607]],
E           
E                    [[1.9372]],
E           
E                    [[2.2474]],
E           
E                    [[1.8932]],
E           
E                    [[1.8002]],
E           
E                    [[2.3377]],
E           
E                    [[2.6462]],
E           
E                    [[2.0837]],
E           
E                    [[2.9944]],
E           
E                    [[2.2693]],
E           
E                    [[1.8470]],
E           
E                    [[2.0004]],
E           
E                    [[1.0882]],
E           
E                    [[2.2923]],
E           
E                    [[1.8939]],
E           
E                    [[1.6876]],
E           
E                    [[2.1404]],
E           
E                    [[2.1730]],
E           
E                    [[2.0086]],
E           
E                    [[2.4434]],
E           
E                    [[1.8390]],
E           
E                    [[2.5747]],
E           
E                    [[1.5938]],
E           
E                    [[1.2155]],
E           
E                    [[1.7041]],
E           
E                    [[1.6980]],
E           
E                    [[2.0306]],
E           
E                    [[2.0170]],
E           
E                    [[1.1282]],
E           
E                    [[2.1298]],
E           
E                    [[2.4408]],
E           
E                    [[1.2412]],
E           
E                    [[2.5821]],
E           
E                    [[1.6976]],
E           
E                    [[1.4172]],
E           
E                    [[1.6449]],
E           
E                    [[1.7079]],
E           
E                    [[2.0430]],
E           
E                    [[2.6771]],
E           
E                    [[2.5491]],
E           
E                    [[2.7351]],
E           
E                    [[2.0681]],
E           
E                    [[1.9967]],
E           
E                    [[2.7066]],
E           
E                    [[2.1135]],
E           
E                    [[2.1336]],
E           
E                    [[1.1756]],
E           
E                    [[1.6907]],
E           
E                    [[2.1122]],
E           
E                    [[1.2308]],
E           
E                    [[1.0500]],
E           
E                    [[3.4394]],
E           
E                    [[1.1448]],
E           
E                    [[1.3113]],
E           
E                    [[2.0852]],
E           
E                    [[1.6113]],
E           
E                    [[1.1555]],
E           
E                    [[1.5977]],
E           
E                    [[2.3042]],
E           
E                    [[0.6561]],
E           
E                    [[1.4503]],
E           
E                    [[1.4592]],
E           
E                    [[2.1307]],
E           
E                    [[0.9457]],
E           
E                    [[1.6667]],
E           
E                    [[0.6475]],
E           
E                    [[1.5688]],
E           
E                    [[2.2034]],
E           
E                    [[1.4415]],
E           
E                    [[1.9518]],
E           
E                    [[1.0384]],
E           
E                    [[2.0780]],
E           
E                    [[1.2406]],
E           
E                    [[1.7417]],
E           
E                    [[1.4410]],
E           
E                    [[1.4012]],
E           
E                    [[1.3812]],
E           
E                    [[1.4452]],
E           
E                    [[2.3342]],
E           
E                    [[0.9673]],
E           
E                    [[0.7199]],
E           
E                    [[1.2747]],
E           
E     

Check failure on line 24 in forge/test/models_ops/test_advindex.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_advindex.test_module[Advindex0-[((448, 1280), torch.float32), ((1, 1), torch.int64)]]

IndexError: index 540 is out of bounds for dimension 0 with size 448
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_advindex.Advindex0'>, [((448, 1280), torch.float32), ((1, 1), torch.int64)], {'model_name': ['pt_whisper_openai_whisper_large_speech_recognition_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0a0aef0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AdvIndex")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_advindex.py:228: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:683: in generate_initial_graph
    context.graph, context.outputs, context.intermediate_tensors, context.inputs, _ = generate_graph(
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:1123: in generate_graph
    outputs = module.forward(*outputs)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/module.py:633: in wrap_forward
    return orig_forward(*args, **kwargs)
forge/test/models_ops/test_advindex.py:24: in forward
    advindex_output_1 = forge.op.AdvIndex("", advindex_input_0, advindex_input_1)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/tm.py:162: in AdvIndex
    return op("adv_index", name, operandA, operandB, attrs=(dim,)).get_tensor()
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/common.py:82: in get_tensor
    result.set_value(get_f_forge_eval(self.cpp_op_type)(values))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/__init__.py:226: in <lambda>
    return lambda *inputs: module_or_class.eval(op_type.op, op_type.attr, *inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

type = 'adv_index', attr = [0]
ops = [tensor([[0.4963, 0.7682, 0.0885,  ..., 0.7358, 0.8219, 0.8401],
        [0.1265, 0.4421, 0.5730,  ..., 0.4247, 0.5047...8932,  ..., 0.4350, 0.4742, 0.0554],
        [0.8759, 0.2447, 0.5269,  ..., 0.3116, 0.5214, 0.7686]]), tensor([[540]])]

    def eval(type, attr, ops):
        assert len(ops) == 1 or (
            type == "adv_index" and len(ops) == 2
        ), f"Tensor manipulation ops should have one input {len(ops)} {attr}"
        t_ops = to_torch_operands(*ops)
        dtype = ops[0].dtype
    
        if type == "transpose":
            assert len(attr) == 3, "Transpose should have 3 attributes"
            dim0, dim1, orig_size = attr
            return torch.transpose(t_ops[0], dim0, dim1)
    
        if type == "reshape":
            return t_ops[0].reshape(attr)
    
        if type == "select":
            assert len(attr) == 4, "Select should have 4 attributes"
            dim, begin, length, stride = attr
            zero_shape = list(t_ops[0].shape)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            result = []
            for offset in range(0, t_ops[0].shape[dim] - begin, stride):
                for i in range(begin, begin + length):
                    if offset + i < t_ops[0].shape[dim] or stride == t_ops[0].shape[dim]:
                        result.append(t_ops[0].select(dim, offset + i))
                    else:
                        result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "gather":
            assert len(attr) == 5, "Gather should have 5 attributes"
            dim, begin, length, stride, orig_size = attr
            x = t_ops[0]
            result = []
            zero_shape = list(x.shape)
            if dim > 0:
                dim -= 4
            while len(zero_shape) <= abs(dim):
                zero_shape = [1] + zero_shape
                x = x.unsqueeze(0)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            offset = 0
            for i in range(0, orig_size):
                range_i = (i - begin) % stride
                if i >= begin and range_i < length:
                    result.append(x.select(dim, offset))
                    offset += 1
                else:
                    result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "index":
            assert len(attr) == 4, "Index should have 4 attributes"
            dim, start, stop, stride = attr
            if dim >= 0:
                dim -= len(ops[0].shape)
    
            if dim == -5:
                return t_ops[0][..., start:stop:stride, :, :, :, :]
            elif dim == -4:
                return t_ops[0][..., start:stop:stride, :, :, :]
            elif dim == -3:
                return t_ops[0][..., start:stop:stride, :, :]
            elif dim == -2:
                return t_ops[0][..., start:stop:stride, :]
            elif dim == -1:
                return t_ops[0][..., start:stop:stride]
            else:
                raise NotImplementedError(f"Dim={dim}")
    
        if type == "adv_index":
            assert len(attr) == 1, "AdvIndex should have 1 attributes"
            dim = attr[0]
            assert dim == 0, "Currently not supported"
    
            if len(t_ops[1].shape) > 1:
                if len(t_ops[0].shape) > len(t_ops[1].shape) and t_ops[0].shape[0] == 1:
                    # Padded
                    ret = torch.unsqueeze(t_ops[0][0][t_ops[1].numpy()], 0)
                else:
>                   ret = torch.unsqueeze(t_ops[0][t_ops[1].numpy()], 0)
E                   IndexError: index 540 is out of bounds for dimension 0 with size 448

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/tm.py:121: IndexError

Check failure on line 24 in forge/test/models_ops/test_advindex.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_advindex.test_module[Advindex0-[((448, 384), torch.float32), ((1, 1), torch.int64)]]

IndexError: index 967 is out of bounds for dimension 0 with size 448
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_advindex.Advindex0'>, [((448, 384), torch.float32), ((1, 1), torch.int64)], {'model_name': ['pt_whisper_openai_whisper_tiny_speech_recognition_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0aadfc0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AdvIndex")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_advindex.py:228: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:683: in generate_initial_graph
    context.graph, context.outputs, context.intermediate_tensors, context.inputs, _ = generate_graph(
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:1123: in generate_graph
    outputs = module.forward(*outputs)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/module.py:633: in wrap_forward
    return orig_forward(*args, **kwargs)
forge/test/models_ops/test_advindex.py:24: in forward
    advindex_output_1 = forge.op.AdvIndex("", advindex_input_0, advindex_input_1)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/tm.py:162: in AdvIndex
    return op("adv_index", name, operandA, operandB, attrs=(dim,)).get_tensor()
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/common.py:82: in get_tensor
    result.set_value(get_f_forge_eval(self.cpp_op_type)(values))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/__init__.py:226: in <lambda>
    return lambda *inputs: module_or_class.eval(op_type.op, op_type.attr, *inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

type = 'adv_index', attr = [0]
ops = [tensor([[0.4963, 0.7682, 0.0885,  ..., 0.3720, 0.7200, 0.9455],
        [0.6654, 0.9998, 0.7593,  ..., 0.1497, 0.3923...7251,  ..., 0.2890, 0.9094, 0.5943],
        [0.4656, 0.9008, 0.5421,  ..., 0.4441, 0.7666, 0.1319]]), tensor([[967]])]

    def eval(type, attr, ops):
        assert len(ops) == 1 or (
            type == "adv_index" and len(ops) == 2
        ), f"Tensor manipulation ops should have one input {len(ops)} {attr}"
        t_ops = to_torch_operands(*ops)
        dtype = ops[0].dtype
    
        if type == "transpose":
            assert len(attr) == 3, "Transpose should have 3 attributes"
            dim0, dim1, orig_size = attr
            return torch.transpose(t_ops[0], dim0, dim1)
    
        if type == "reshape":
            return t_ops[0].reshape(attr)
    
        if type == "select":
            assert len(attr) == 4, "Select should have 4 attributes"
            dim, begin, length, stride = attr
            zero_shape = list(t_ops[0].shape)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            result = []
            for offset in range(0, t_ops[0].shape[dim] - begin, stride):
                for i in range(begin, begin + length):
                    if offset + i < t_ops[0].shape[dim] or stride == t_ops[0].shape[dim]:
                        result.append(t_ops[0].select(dim, offset + i))
                    else:
                        result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "gather":
            assert len(attr) == 5, "Gather should have 5 attributes"
            dim, begin, length, stride, orig_size = attr
            x = t_ops[0]
            result = []
            zero_shape = list(x.shape)
            if dim > 0:
                dim -= 4
            while len(zero_shape) <= abs(dim):
                zero_shape = [1] + zero_shape
                x = x.unsqueeze(0)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            offset = 0
            for i in range(0, orig_size):
                range_i = (i - begin) % stride
                if i >= begin and range_i < length:
                    result.append(x.select(dim, offset))
                    offset += 1
                else:
                    result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "index":
            assert len(attr) == 4, "Index should have 4 attributes"
            dim, start, stop, stride = attr
            if dim >= 0:
                dim -= len(ops[0].shape)
    
            if dim == -5:
                return t_ops[0][..., start:stop:stride, :, :, :, :]
            elif dim == -4:
                return t_ops[0][..., start:stop:stride, :, :, :]
            elif dim == -3:
                return t_ops[0][..., start:stop:stride, :, :]
            elif dim == -2:
                return t_ops[0][..., start:stop:stride, :]
            elif dim == -1:
                return t_ops[0][..., start:stop:stride]
            else:
                raise NotImplementedError(f"Dim={dim}")
    
        if type == "adv_index":
            assert len(attr) == 1, "AdvIndex should have 1 attributes"
            dim = attr[0]
            assert dim == 0, "Currently not supported"
    
            if len(t_ops[1].shape) > 1:
                if len(t_ops[0].shape) > len(t_ops[1].shape) and t_ops[0].shape[0] == 1:
                    # Padded
                    ret = torch.unsqueeze(t_ops[0][0][t_ops[1].numpy()], 0)
                else:
>                   ret = torch.unsqueeze(t_ops[0][t_ops[1].numpy()], 0)
E                   IndexError: index 967 is out of bounds for dimension 0 with size 448

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/tm.py:121: IndexError

Check failure on line 24 in forge/test/models_ops/test_advindex.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_advindex.test_module[Advindex0-[((448, 768), torch.float32), ((1, 1), torch.int64)]]

IndexError: index 686 is out of bounds for dimension 0 with size 448
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_advindex.Advindex0'>, [((448, 768), torch.float32), ((1, 1), torch.int64)], {'model_name': ['pt_whisper_openai_whisper_small_speech_recognition_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0e83490>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AdvIndex")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_advindex.py:228: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:683: in generate_initial_graph
    context.graph, context.outputs, context.intermediate_tensors, context.inputs, _ = generate_graph(
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:1123: in generate_graph
    outputs = module.forward(*outputs)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/module.py:633: in wrap_forward
    return orig_forward(*args, **kwargs)
forge/test/models_ops/test_advindex.py:24: in forward
    advindex_output_1 = forge.op.AdvIndex("", advindex_input_0, advindex_input_1)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/tm.py:162: in AdvIndex
    return op("adv_index", name, operandA, operandB, attrs=(dim,)).get_tensor()
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/common.py:82: in get_tensor
    result.set_value(get_f_forge_eval(self.cpp_op_type)(values))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/__init__.py:226: in <lambda>
    return lambda *inputs: module_or_class.eval(op_type.op, op_type.attr, *inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

type = 'adv_index', attr = [0]
ops = [tensor([[0.4963, 0.7682, 0.0885,  ..., 0.1497, 0.3923, 0.9338],
        [0.1164, 0.3539, 0.6640,  ..., 0.5025, 0.4458...9689,  ..., 0.7033, 0.2813, 0.8834],
        [0.0584, 0.6134, 0.5302,  ..., 0.7396, 0.1252, 0.8320]]), tensor([[686]])]

    def eval(type, attr, ops):
        assert len(ops) == 1 or (
            type == "adv_index" and len(ops) == 2
        ), f"Tensor manipulation ops should have one input {len(ops)} {attr}"
        t_ops = to_torch_operands(*ops)
        dtype = ops[0].dtype
    
        if type == "transpose":
            assert len(attr) == 3, "Transpose should have 3 attributes"
            dim0, dim1, orig_size = attr
            return torch.transpose(t_ops[0], dim0, dim1)
    
        if type == "reshape":
            return t_ops[0].reshape(attr)
    
        if type == "select":
            assert len(attr) == 4, "Select should have 4 attributes"
            dim, begin, length, stride = attr
            zero_shape = list(t_ops[0].shape)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            result = []
            for offset in range(0, t_ops[0].shape[dim] - begin, stride):
                for i in range(begin, begin + length):
                    if offset + i < t_ops[0].shape[dim] or stride == t_ops[0].shape[dim]:
                        result.append(t_ops[0].select(dim, offset + i))
                    else:
                        result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "gather":
            assert len(attr) == 5, "Gather should have 5 attributes"
            dim, begin, length, stride, orig_size = attr
            x = t_ops[0]
            result = []
            zero_shape = list(x.shape)
            if dim > 0:
                dim -= 4
            while len(zero_shape) <= abs(dim):
                zero_shape = [1] + zero_shape
                x = x.unsqueeze(0)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            offset = 0
            for i in range(0, orig_size):
                range_i = (i - begin) % stride
                if i >= begin and range_i < length:
                    result.append(x.select(dim, offset))
                    offset += 1
                else:
                    result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "index":
            assert len(attr) == 4, "Index should have 4 attributes"
            dim, start, stop, stride = attr
            if dim >= 0:
                dim -= len(ops[0].shape)
    
            if dim == -5:
                return t_ops[0][..., start:stop:stride, :, :, :, :]
            elif dim == -4:
                return t_ops[0][..., start:stop:stride, :, :, :]
            elif dim == -3:
                return t_ops[0][..., start:stop:stride, :, :]
            elif dim == -2:
                return t_ops[0][..., start:stop:stride, :]
            elif dim == -1:
                return t_ops[0][..., start:stop:stride]
            else:
                raise NotImplementedError(f"Dim={dim}")
    
        if type == "adv_index":
            assert len(attr) == 1, "AdvIndex should have 1 attributes"
            dim = attr[0]
            assert dim == 0, "Currently not supported"
    
            if len(t_ops[1].shape) > 1:
                if len(t_ops[0].shape) > len(t_ops[1].shape) and t_ops[0].shape[0] == 1:
                    # Padded
                    ret = torch.unsqueeze(t_ops[0][0][t_ops[1].numpy()], 0)
                else:
>                   ret = torch.unsqueeze(t_ops[0][t_ops[1].numpy()], 0)
E                   IndexError: index 686 is out of bounds for dimension 0 with size 448

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/tm.py:121: IndexError

Check failure on line 34 in forge/test/models_ops/test_advindex.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_advindex.test_module[Advindex1-[((1, 2), torch.float32)]]

IndexError: index 933 is out of bounds for dimension 0 with size 1
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_advindex.Advindex1'>, [((1, 2), torch.float32)], {'model_name': ['pt_gptneo_eleutherai_g...uct_seq_cls_hf', 'pt_llama3_meta_llama_llama_3_1_8b_seq_cls_hf', 'pt_llama3_meta_llama_llama_3_2_1b_seq_cls_hf', ...]})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0a09090>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AdvIndex")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_advindex.py:228: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:683: in generate_initial_graph
    context.graph, context.outputs, context.intermediate_tensors, context.inputs, _ = generate_graph(
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:1123: in generate_graph
    outputs = module.forward(*outputs)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/module.py:633: in wrap_forward
    return orig_forward(*args, **kwargs)
forge/test/models_ops/test_advindex.py:34: in forward
    advindex_output_1 = forge.op.AdvIndex("", advindex_input_0, self.get_constant("advindex1_const_1"))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/tm.py:162: in AdvIndex
    return op("adv_index", name, operandA, operandB, attrs=(dim,)).get_tensor()
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/common.py:82: in get_tensor
    result.set_value(get_f_forge_eval(self.cpp_op_type)(values))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/__init__.py:226: in <lambda>
    return lambda *inputs: module_or_class.eval(op_type.op, op_type.attr, *inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

type = 'adv_index', attr = [0]
ops = [tensor([[0.4963, 0.7682]]), tensor([933])]

    def eval(type, attr, ops):
        assert len(ops) == 1 or (
            type == "adv_index" and len(ops) == 2
        ), f"Tensor manipulation ops should have one input {len(ops)} {attr}"
        t_ops = to_torch_operands(*ops)
        dtype = ops[0].dtype
    
        if type == "transpose":
            assert len(attr) == 3, "Transpose should have 3 attributes"
            dim0, dim1, orig_size = attr
            return torch.transpose(t_ops[0], dim0, dim1)
    
        if type == "reshape":
            return t_ops[0].reshape(attr)
    
        if type == "select":
            assert len(attr) == 4, "Select should have 4 attributes"
            dim, begin, length, stride = attr
            zero_shape = list(t_ops[0].shape)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            result = []
            for offset in range(0, t_ops[0].shape[dim] - begin, stride):
                for i in range(begin, begin + length):
                    if offset + i < t_ops[0].shape[dim] or stride == t_ops[0].shape[dim]:
                        result.append(t_ops[0].select(dim, offset + i))
                    else:
                        result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "gather":
            assert len(attr) == 5, "Gather should have 5 attributes"
            dim, begin, length, stride, orig_size = attr
            x = t_ops[0]
            result = []
            zero_shape = list(x.shape)
            if dim > 0:
                dim -= 4
            while len(zero_shape) <= abs(dim):
                zero_shape = [1] + zero_shape
                x = x.unsqueeze(0)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            offset = 0
            for i in range(0, orig_size):
                range_i = (i - begin) % stride
                if i >= begin and range_i < length:
                    result.append(x.select(dim, offset))
                    offset += 1
                else:
                    result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "index":
            assert len(attr) == 4, "Index should have 4 attributes"
            dim, start, stop, stride = attr
            if dim >= 0:
                dim -= len(ops[0].shape)
    
            if dim == -5:
                return t_ops[0][..., start:stop:stride, :, :, :, :]
            elif dim == -4:
                return t_ops[0][..., start:stop:stride, :, :, :]
            elif dim == -3:
                return t_ops[0][..., start:stop:stride, :, :]
            elif dim == -2:
                return t_ops[0][..., start:stop:stride, :]
            elif dim == -1:
                return t_ops[0][..., start:stop:stride]
            else:
                raise NotImplementedError(f"Dim={dim}")
    
        if type == "adv_index":
            assert len(attr) == 1, "AdvIndex should have 1 attributes"
            dim = attr[0]
            assert dim == 0, "Currently not supported"
    
            if len(t_ops[1].shape) > 1:
                if len(t_ops[0].shape) > len(t_ops[1].shape) and t_ops[0].shape[0] == 1:
                    # Padded
                    ret = torch.unsqueeze(t_ops[0][0][t_ops[1].numpy()], 0)
                else:
                    ret = torch.unsqueeze(t_ops[0][t_ops[1].numpy()], 0)
            else:
>               ret = t_ops[0][t_ops[1].numpy()]
E               IndexError: index 933 is out of bounds for dimension 0 with size 1

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/tm.py:123: IndexError

Check failure on line 24 in forge/test/models_ops/test_advindex.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_advindex.test_module[Advindex0-[((32, 2), torch.float32), ((1,), torch.int64)]]

IndexError: index 775 is out of bounds for dimension 0 with size 32
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_advindex.Advindex0'>, [((32, 2), torch.float32), ((1,), torch.int64)], {'model_name': ['pt_opt_facebook_opt_1_3b_seq_cls_hf', 'pt_opt_facebook_opt_125m_seq_cls_hf', 'pt_opt_facebook_opt_350m_seq_cls_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0ae9360>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AdvIndex")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_advindex.py:228: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:683: in generate_initial_graph
    context.graph, context.outputs, context.intermediate_tensors, context.inputs, _ = generate_graph(
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:1123: in generate_graph
    outputs = module.forward(*outputs)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/module.py:633: in wrap_forward
    return orig_forward(*args, **kwargs)
forge/test/models_ops/test_advindex.py:24: in forward
    advindex_output_1 = forge.op.AdvIndex("", advindex_input_0, advindex_input_1)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/tm.py:162: in AdvIndex
    return op("adv_index", name, operandA, operandB, attrs=(dim,)).get_tensor()
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/common.py:82: in get_tensor
    result.set_value(get_f_forge_eval(self.cpp_op_type)(values))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/__init__.py:226: in <lambda>
    return lambda *inputs: module_or_class.eval(op_type.op, op_type.attr, *inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

type = 'adv_index', attr = [0]
ops = [tensor([[0.4963, 0.7682],
        [0.0885, 0.1320],
        [0.3074, 0.6341],
        [0.4901, 0.8964],
        [0.45...       [0.5932, 0.1123],
        [0.1535, 0.2417],
        [0.7262, 0.7011],
        [0.2038, 0.6511]]), tensor([775])]

    def eval(type, attr, ops):
        assert len(ops) == 1 or (
            type == "adv_index" and len(ops) == 2
        ), f"Tensor manipulation ops should have one input {len(ops)} {attr}"
        t_ops = to_torch_operands(*ops)
        dtype = ops[0].dtype
    
        if type == "transpose":
            assert len(attr) == 3, "Transpose should have 3 attributes"
            dim0, dim1, orig_size = attr
            return torch.transpose(t_ops[0], dim0, dim1)
    
        if type == "reshape":
            return t_ops[0].reshape(attr)
    
        if type == "select":
            assert len(attr) == 4, "Select should have 4 attributes"
            dim, begin, length, stride = attr
            zero_shape = list(t_ops[0].shape)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            result = []
            for offset in range(0, t_ops[0].shape[dim] - begin, stride):
                for i in range(begin, begin + length):
                    if offset + i < t_ops[0].shape[dim] or stride == t_ops[0].shape[dim]:
                        result.append(t_ops[0].select(dim, offset + i))
                    else:
                        result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "gather":
            assert len(attr) == 5, "Gather should have 5 attributes"
            dim, begin, length, stride, orig_size = attr
            x = t_ops[0]
            result = []
            zero_shape = list(x.shape)
            if dim > 0:
                dim -= 4
            while len(zero_shape) <= abs(dim):
                zero_shape = [1] + zero_shape
                x = x.unsqueeze(0)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            offset = 0
            for i in range(0, orig_size):
                range_i = (i - begin) % stride
                if i >= begin and range_i < length:
                    result.append(x.select(dim, offset))
                    offset += 1
                else:
                    result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "index":
            assert len(attr) == 4, "Index should have 4 attributes"
            dim, start, stop, stride = attr
            if dim >= 0:
                dim -= len(ops[0].shape)
    
            if dim == -5:
                return t_ops[0][..., start:stop:stride, :, :, :, :]
            elif dim == -4:
                return t_ops[0][..., start:stop:stride, :, :, :]
            elif dim == -3:
                return t_ops[0][..., start:stop:stride, :, :]
            elif dim == -2:
                return t_ops[0][..., start:stop:stride, :]
            elif dim == -1:
                return t_ops[0][..., start:stop:stride]
            else:
                raise NotImplementedError(f"Dim={dim}")
    
        if type == "adv_index":
            assert len(attr) == 1, "AdvIndex should have 1 attributes"
            dim = attr[0]
            assert dim == 0, "Currently not supported"
    
            if len(t_ops[1].shape) > 1:
                if len(t_ops[0].shape) > len(t_ops[1].shape) and t_ops[0].shape[0] == 1:
                    # Padded
                    ret = torch.unsqueeze(t_ops[0][0][t_ops[1].numpy()], 0)
                else:
                    ret = torch.unsqueeze(t_ops[0][t_ops[1].numpy()], 0)
            else:
>               ret = t_ops[0][t_ops[1].numpy()]
E               IndexError: index 775 is out of bounds for dimension 0 with size 32

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/tm.py:123: IndexError

Check failure on line 60 in forge/test/models_ops/test_advindex.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_advindex.test_module[Advindex3-[((2401,), torch.int64)]]

IndexError: index 659 is out of bounds for dimension 0 with size 169
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_advindex.Advindex3'>, [((2401,), torch.int64)], {'model_name': ['pt_swin_microsoft_swin_tiny_patch4_window7_224_img_cls_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0aadf30>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AdvIndex")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_advindex.py:228: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:683: in generate_initial_graph
    context.graph, context.outputs, context.intermediate_tensors, context.inputs, _ = generate_graph(
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:1123: in generate_graph
    outputs = module.forward(*outputs)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/module.py:633: in wrap_forward
    return orig_forward(*args, **kwargs)
forge/test/models_ops/test_advindex.py:60: in forward
    advindex_output_1 = forge.op.AdvIndex("", self.get_parameter("advindex3.weight_0"), advindex_input_1)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/tm.py:162: in AdvIndex
    return op("adv_index", name, operandA, operandB, attrs=(dim,)).get_tensor()
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/common.py:82: in get_tensor
    result.set_value(get_f_forge_eval(self.cpp_op_type)(values))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/__init__.py:226: in <lambda>
    return lambda *inputs: module_or_class.eval(op_type.op, op_type.attr, *inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

type = 'adv_index', attr = [0]
ops = [tensor([[0.5021, 0.1993, 0.7877, 0.3959, 0.5343, 0.2395],
        [0.0765, 0.1679, 0.4451, 0.1380, 0.9928, 0.5054],
 ...  [0.6022, 0.9509, 0.7530, 0.4840, 0.9816, 0.2013]], requires_grad=True), tensor([ 44, 239, 933,  ...,  86, 971, 475])]

    def eval(type, attr, ops):
        assert len(ops) == 1 or (
            type == "adv_index" and len(ops) == 2
        ), f"Tensor manipulation ops should have one input {len(ops)} {attr}"
        t_ops = to_torch_operands(*ops)
        dtype = ops[0].dtype
    
        if type == "transpose":
            assert len(attr) == 3, "Transpose should have 3 attributes"
            dim0, dim1, orig_size = attr
            return torch.transpose(t_ops[0], dim0, dim1)
    
        if type == "reshape":
            return t_ops[0].reshape(attr)
    
        if type == "select":
            assert len(attr) == 4, "Select should have 4 attributes"
            dim, begin, length, stride = attr
            zero_shape = list(t_ops[0].shape)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            result = []
            for offset in range(0, t_ops[0].shape[dim] - begin, stride):
                for i in range(begin, begin + length):
                    if offset + i < t_ops[0].shape[dim] or stride == t_ops[0].shape[dim]:
                        result.append(t_ops[0].select(dim, offset + i))
                    else:
                        result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "gather":
            assert len(attr) == 5, "Gather should have 5 attributes"
            dim, begin, length, stride, orig_size = attr
            x = t_ops[0]
            result = []
            zero_shape = list(x.shape)
            if dim > 0:
                dim -= 4
            while len(zero_shape) <= abs(dim):
                zero_shape = [1] + zero_shape
                x = x.unsqueeze(0)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            offset = 0
            for i in range(0, orig_size):
                range_i = (i - begin) % stride
                if i >= begin and range_i < length:
                    result.append(x.select(dim, offset))
                    offset += 1
                else:
                    result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "index":
            assert len(attr) == 4, "Index should have 4 attributes"
            dim, start, stop, stride = attr
            if dim >= 0:
                dim -= len(ops[0].shape)
    
            if dim == -5:
                return t_ops[0][..., start:stop:stride, :, :, :, :]
            elif dim == -4:
                return t_ops[0][..., start:stop:stride, :, :, :]
            elif dim == -3:
                return t_ops[0][..., start:stop:stride, :, :]
            elif dim == -2:
                return t_ops[0][..., start:stop:stride, :]
            elif dim == -1:
                return t_ops[0][..., start:stop:stride]
            else:
                raise NotImplementedError(f"Dim={dim}")
    
        if type == "adv_index":
            assert len(attr) == 1, "AdvIndex should have 1 attributes"
            dim = attr[0]
            assert dim == 0, "Currently not supported"
    
            if len(t_ops[1].shape) > 1:
                if len(t_ops[0].shape) > len(t_ops[1].shape) and t_ops[0].shape[0] == 1:
                    # Padded
                    ret = torch.unsqueeze(t_ops[0][0][t_ops[1].numpy()], 0)
                else:
                    ret = torch.unsqueeze(t_ops[0][t_ops[1].numpy()], 0)
            else:
>               ret = t_ops[0][t_ops[1].numpy()]
E               IndexError: index 659 is out of bounds for dimension 0 with size 169

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/tm.py:123: IndexError

Check failure on line 86 in forge/test/models_ops/test_advindex.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_advindex.test_module[Advindex5-[((2401,), torch.int64)]]

IndexError: index 616 is out of bounds for dimension 0 with size 169
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_advindex.Advindex5'>, [((2401,), torch.int64)], {'model_name': ['pt_swin_microsoft_swin_tiny_patch4_window7_224_img_cls_hf']})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0e83010>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AdvIndex")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_advindex.py:228: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:683: in generate_initial_graph
    context.graph, context.outputs, context.intermediate_tensors, context.inputs, _ = generate_graph(
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:1123: in generate_graph
    outputs = module.forward(*outputs)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/module.py:633: in wrap_forward
    return orig_forward(*args, **kwargs)
forge/test/models_ops/test_advindex.py:86: in forward
    advindex_output_1 = forge.op.AdvIndex("", self.get_parameter("advindex5.weight_0"), advindex_input_1)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/tm.py:162: in AdvIndex
    return op("adv_index", name, operandA, operandB, attrs=(dim,)).get_tensor()
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/common.py:82: in get_tensor
    result.set_value(get_f_forge_eval(self.cpp_op_type)(values))
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/__init__.py:226: in <lambda>
    return lambda *inputs: module_or_class.eval(op_type.op, op_type.attr, *inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

type = 'adv_index', attr = [0]
ops = [tensor([[0.5021, 0.1993, 0.7877,  ..., 0.0038, 0.6580, 0.7363],
        [0.4000, 0.0579, 0.2118,  ..., 0.3656, 0.4324...1380, 0.8632,  ..., 0.9592, 0.1974, 0.6280]],
       requires_grad=True), tensor([ 44, 239, 933,  ...,  86, 971, 475])]

    def eval(type, attr, ops):
        assert len(ops) == 1 or (
            type == "adv_index" and len(ops) == 2
        ), f"Tensor manipulation ops should have one input {len(ops)} {attr}"
        t_ops = to_torch_operands(*ops)
        dtype = ops[0].dtype
    
        if type == "transpose":
            assert len(attr) == 3, "Transpose should have 3 attributes"
            dim0, dim1, orig_size = attr
            return torch.transpose(t_ops[0], dim0, dim1)
    
        if type == "reshape":
            return t_ops[0].reshape(attr)
    
        if type == "select":
            assert len(attr) == 4, "Select should have 4 attributes"
            dim, begin, length, stride = attr
            zero_shape = list(t_ops[0].shape)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            result = []
            for offset in range(0, t_ops[0].shape[dim] - begin, stride):
                for i in range(begin, begin + length):
                    if offset + i < t_ops[0].shape[dim] or stride == t_ops[0].shape[dim]:
                        result.append(t_ops[0].select(dim, offset + i))
                    else:
                        result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "gather":
            assert len(attr) == 5, "Gather should have 5 attributes"
            dim, begin, length, stride, orig_size = attr
            x = t_ops[0]
            result = []
            zero_shape = list(x.shape)
            if dim > 0:
                dim -= 4
            while len(zero_shape) <= abs(dim):
                zero_shape = [1] + zero_shape
                x = x.unsqueeze(0)
            zero_shape[dim] = 1
            zero_slice = torch.zeros(zero_shape, dtype=dtype).squeeze(dim)
            offset = 0
            for i in range(0, orig_size):
                range_i = (i - begin) % stride
                if i >= begin and range_i < length:
                    result.append(x.select(dim, offset))
                    offset += 1
                else:
                    result.append(zero_slice)
            return torch.stack(result, dim=dim)
    
        if type == "index":
            assert len(attr) == 4, "Index should have 4 attributes"
            dim, start, stop, stride = attr
            if dim >= 0:
                dim -= len(ops[0].shape)
    
            if dim == -5:
                return t_ops[0][..., start:stop:stride, :, :, :, :]
            elif dim == -4:
                return t_ops[0][..., start:stop:stride, :, :, :]
            elif dim == -3:
                return t_ops[0][..., start:stop:stride, :, :]
            elif dim == -2:
                return t_ops[0][..., start:stop:stride, :]
            elif dim == -1:
                return t_ops[0][..., start:stop:stride]
            else:
                raise NotImplementedError(f"Dim={dim}")
    
        if type == "adv_index":
            assert len(attr) == 1, "AdvIndex should have 1 attributes"
            dim = attr[0]
            assert dim == 0, "Currently not supported"
    
            if len(t_ops[1].shape) > 1:
                if len(t_ops[0].shape) > len(t_ops[1].shape) and t_ops[0].shape[0] == 1:
                    # Padded
                    ret = torch.unsqueeze(t_ops[0][0][t_ops[1].numpy()], 0)
                else:
                    ret = torch.unsqueeze(t_ops[0][t_ops[1].numpy()], 0)
            else:
>               ret = t_ops[0][t_ops[1].numpy()]
E               IndexError: index 616 is out of bounds for dimension 0 with size 169

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/op/eval/forge/tm.py:123: IndexError

Check failure on line 1472 in forge/test/models_ops/test_avgpool2d.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_avgpool2d.test_module[Avgpool2D9-[((1, 1536, 8, 8), torch.float32)]]

RuntimeError: Tensor 1 - stride mismatch: expected [64, 1], got [0, 0]
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_avgpool2d.Avgpool2D9'>, [((1, 1536, 8, 8), torch.float32)], {'model_name': ['pt_inceptio... 'op_params': {'ceil_mode': 'False', 'channel_last': '0', 'count_include_pad': 'False', 'kernel_size': '[3, 3]', ...}})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0aaee60>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "AvgPool2d")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_avgpool2d.py:1472: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:302: in verify
    co_out = compiled_model(*inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.compiled_graph_state.CompiledModel object at 0x7fb5c8d0ab60>
inputs = (Forge Tensor: tensor([[[[0.4963, 0.7682, 0.0885,  ..., 0.6341, 0.4901, 0.8964],
          [0.4556, 0.6323, 0.3489,  ......, 0.0106, 0.4972, 0.0324],
          [0.6137, 0.5355, 0.7051,  ..., 0.0196, 0.1848, 0.0096]]]]), DataFormat.Float32,)
inputs_and_parameters = [tensor([[[[0.4963, 0.7682, 0.0885,  ..., 0.6341, 0.4901, 0.8964],
          [0.4556, 0.6323, 0.3489,  ..., 0.1689, 0....1]]],


        [[[0.1111, 0.1111, 0.1111],
          [0.1111, 0.1111, 0.1111],
          [0.1111, 0.1111, 0.1111]]]])]

    def __call__(self, *inputs: AnyTensor) -> List[torch.Tensor]:
        """
        Run inference on the compiled model.
    
        Parameters
        ----------
        inputs: [Tensor, ...]
            Input tensors
    
        Returns
        -------
        List[Tensor]
            Output tensors
        """
        self.inputs = [*to_pt_tensors(inputs)]
    
        inputs_and_parameters = [
            *self.inputs,
            *self.fwd_compiled_graph_state.get_ordered_constant_tensors(),
            *self.fwd_compiled_graph_state.get_ordered_parameter_tensors(),
        ]
    
        assert all(
            [isinstance(t, torch.Tensor) for t in inputs_and_parameters]
        ), "All inputs should be torch tensors by now."
    
        if self.training() and isinstance(self.framework_module, PyTorchModule):
            for name, param in self.framework_module.module.named_parameters():
                if param.requires_grad:
                    our_tensor = self.fwd_compiled_graph_state.get_parameter_tensor(name)
    
                    # NOTE: for parameters that require gradients, we want to share the same tensor with the PyTorch
                    # module. This is because we want to be able to optimize the parameters both on the device
                    # (through our runtime) and via the torch optimizers. So this ensures that whichever side updates
                    # the parameter value, the other side can see the change.
                    #
                    # This could change in the future, but for now ensure that our premise is correct.
                    assert param is our_tensor
    
        logger.info(
            f"Running model {self.framework_module.get_name()} {self.fwd_compiled_graph_state.graph.get_name()} on device..."
        )
>       all_outputs = run_binary(self.compiled_binary, int(ProgramId.FORWARD), inputs_and_parameters)
E       RuntimeError: Tensor 1 - stride mismatch: expected [64, 1], got [0, 0]

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compiled_graph_state.py:254: RuntimeError

Check failure on line 170 in forge/test/models_ops/test_broadcast.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_broadcast.test_module[Broadcast0-[((1, 1, 1, 128), torch.bool)]]

RuntimeError: Generated MLIR module failed verification.
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_broadcast.Broadcast0'>, [((1, 1, 1, 128), torch.bool)], {'model_name': ['pt_distilbert_d...sed_ner_hrl_token_cls_hf', 'pt_distilbert_distilbert_base_uncased_mlm_hf'], 'op_params': {'dim': '-3', 'shape': '12'}})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0a09750>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Broadcast")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_broadcast.py:170: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

context = CompileContext(modules=[Module Broadcast0], graph_name='Broadcast0', compiler_cfg=CompilerConfig(enable_training=False...cles_offset=0, forge_module=<forge._C.ForgeGraphModule object at 0x7fb619d233b0>, compiled_binary=None, attach_to=None)

    def run_mlir_compiler(context: CompileContext) -> CompileDepth:
        assert context.forge_module is not None
    
>       context.compiled_binary = forge._C.run_mlir_compiler(context.forge_module)
E       RuntimeError: Generated MLIR module failed verification.

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:985: RuntimeError

Check failure on line 172 in forge/test/models_ops/test_broadcast.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_broadcast.test_module[Broadcast1-[((1, 1, 1, 128), torch.bool)]]

RuntimeError: Tensor 0 - data type mismatch: expected UInt8, got Float32
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_broadcast.Broadcast1'>, [((1, 1, 1, 128), torch.bool)], {'model_name': ['pt_distilbert_d...ased_ner_hrl_token_cls_hf', 'pt_distilbert_distilbert_base_uncased_mlm_hf'], 'op_params': {'dim': '-4', 'shape': '1'}})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0ae93f0>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Broadcast")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_broadcast.py:172: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:302: in verify
    co_out = compiled_model(*inputs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.compiled_graph_state.CompiledModel object at 0x7fb5c8d85330>
inputs = (Forge Tensor: tensor([[[[0.4963, 0.7682, 0.0885, 0.1320, 0.3074, 0.6341, 0.4901, 0.8964,
           0.4556, 0.6323, 0...5226, 0.5730, 0.6186,
           0.6962, 0.5300, 0.2560, 0.7366, 0.0204, 0.2036, 0.3748, 0.2564]]]]), DataFormat.Int8,)
inputs_and_parameters = [tensor([[[[0.4963, 0.7682, 0.0885, 0.1320, 0.3074, 0.6341, 0.4901, 0.8964,
           0.4556, 0.6323, 0.3489, 0.4017,...0.0784, 0.3756, 0.5226, 0.5730, 0.6186,
           0.6962, 0.5300, 0.2560, 0.7366, 0.0204, 0.2036, 0.3748, 0.2564]]]])]

    def __call__(self, *inputs: AnyTensor) -> List[torch.Tensor]:
        """
        Run inference on the compiled model.
    
        Parameters
        ----------
        inputs: [Tensor, ...]
            Input tensors
    
        Returns
        -------
        List[Tensor]
            Output tensors
        """
        self.inputs = [*to_pt_tensors(inputs)]
    
        inputs_and_parameters = [
            *self.inputs,
            *self.fwd_compiled_graph_state.get_ordered_constant_tensors(),
            *self.fwd_compiled_graph_state.get_ordered_parameter_tensors(),
        ]
    
        assert all(
            [isinstance(t, torch.Tensor) for t in inputs_and_parameters]
        ), "All inputs should be torch tensors by now."
    
        if self.training() and isinstance(self.framework_module, PyTorchModule):
            for name, param in self.framework_module.module.named_parameters():
                if param.requires_grad:
                    our_tensor = self.fwd_compiled_graph_state.get_parameter_tensor(name)
    
                    # NOTE: for parameters that require gradients, we want to share the same tensor with the PyTorch
                    # module. This is because we want to be able to optimize the parameters both on the device
                    # (through our runtime) and via the torch optimizers. So this ensures that whichever side updates
                    # the parameter value, the other side can see the change.
                    #
                    # This could change in the future, but for now ensure that our premise is correct.
                    assert param is our_tensor
    
        logger.info(
            f"Running model {self.framework_module.get_name()} {self.fwd_compiled_graph_state.graph.get_name()} on device..."
        )
>       all_outputs = run_binary(self.compiled_binary, int(ProgramId.FORWARD), inputs_and_parameters)
E       RuntimeError: Tensor 0 - data type mismatch: expected UInt8, got Float32

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compiled_graph_state.py:254: RuntimeError

Check failure on line 170 in forge/test/models_ops/test_broadcast.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_broadcast.test_module[Broadcast2-[((1, 12, 1, 128), torch.bool)]]

RuntimeError: Generated MLIR module failed verification.
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_broadcast.Broadcast2'>, [((1, 12, 1, 128), torch.bool)], {'model_name': ['pt_distilbert_...ed_ner_hrl_token_cls_hf', 'pt_distilbert_distilbert_base_uncased_mlm_hf'], 'op_params': {'dim': '-2', 'shape': '128'}})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d0a0ac20>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Broadcast")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
>       compiled_model = compile(framework_model, sample_inputs=inputs)

forge/test/models_ops/test_broadcast.py:170: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:251: in compile_main
    return forge_compile_from_context(compile_context)
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:293: in forge_compile_from_context
    next_stage = stage_to_func[current_stage](context)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

context = CompileContext(modules=[Module Broadcast2], graph_name='Broadcast2', compiler_cfg=CompilerConfig(enable_training=False...cles_offset=0, forge_module=<forge._C.ForgeGraphModule object at 0x7fb5d0ad49f0>, compiled_binary=None, attach_to=None)

    def run_mlir_compiler(context: CompileContext) -> CompileDepth:
        assert context.forge_module is not None
    
>       context.compiled_binary = forge._C.run_mlir_compiler(context.forge_module)
E       RuntimeError: Generated MLIR module failed verification.

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/compile.py:985: RuntimeError

Check failure on line 502 in forge/test/models_ops/test_cast.py

See this annotation in the file changed.

@github-actions github-actions / TT-Forge-FE Tests

test_cast.test_module[Cast0-[((2, 13, 1), torch.int64)]]

ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[ 44.],
         [239.],
         [933.],
         [760.],
         [963.],
         [379.],
         [427.],
         [503.],
         [497.],
         [683.],
         [101.],
         [866.],
         [756.]],

        [[399.],
         [878.],
         [376.],
         [ 56.],
         [868.],
         [794.],
         [ 33.],
         [126.],
         [119.],
         [391.],
         [254.],
         [824.],
         [841.]]]), compiled_model=tensor([[[ 44.],
         [  0.],
         [239.],
         [  0.],
         [933.],
         [  0.],
         [760.],
         [  0.],
         [963.],
         [  0.],
         [379.],
         [  0.],
         [427.]],

        [[  0.],
         [503.],
         [  0.],
         [497.],
         [  0.],
         [683.],
         [  0.],
         [101.],
         [  0.],
         [866.],
         [  0.],
         [756.],
         [  0.]]])
Raw output
forge_module_and_shapes_dtypes = (<class 'test.models_ops.test_cast.Cast0'>, [((2, 13, 1), torch.int64)], {'model_name': ['pt_stereo_facebook_musicgen_...sic_generation_hf', 'pt_stereo_facebook_musicgen_small_music_generation_hf'], 'op_params': {'dtype': 'torch.float32'}})
record_forge_property = <function record_property.<locals>.append_property at 0x7fb5d86bfd00>

    @pytest.mark.push
    @pytest.mark.parametrize("forge_module_and_shapes_dtypes", forge_modules_and_shapes_dtypes_list, ids=ids_func)
    def test_module(forge_module_and_shapes_dtypes, record_forge_property):
        record_forge_property("op_name", "Cast")
    
        forge_module, operand_shapes_dtypes, metadata = forge_module_and_shapes_dtypes
    
        pcc = metadata.pop("pcc")
    
        for metadata_name, metadata_value in metadata.items():
            record_forge_property(metadata_name, metadata_value)
    
        max_int = 1000
        inputs = [
            Tensor.create_from_shape(operand_shape, operand_dtype, max_int=max_int)
            for operand_shape, operand_dtype in operand_shapes_dtypes
        ]
    
        framework_model = forge_module(forge_module.__name__)
        framework_model.process_framework_parameters()
    
        for name, parameter in framework_model._parameters.items():
            parameter_tensor = Tensor.create_torch_tensor(
                shape=parameter.shape.get_pytorch_shape(), dtype=parameter.pt_data_format, max_int=max_int
            )
            framework_model.set_parameter(name, parameter_tensor)
    
        for name, constant in framework_model._constants.items():
            constant_tensor = Tensor.create_torch_tensor(
                shape=constant.shape.get_pytorch_shape(), dtype=constant.pt_data_format, max_int=max_int
            )
            framework_model.set_constant(name, constant_tensor)
    
        compiled_model = compile(framework_model, sample_inputs=inputs)
    
>       verify(inputs, framework_model, compiled_model, VerifyConfig(value_checker=AutomaticValueChecker(pcc=pcc)))

forge/test/models_ops/test_cast.py:502: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/verify.py:333: in verify
    verify_cfg.value_checker.check(fw, co)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <forge.verify.value_checkers.AutomaticValueChecker object at 0x7fb5d81266b0>
fw_out = tensor([[[ 44.],
         [239.],
         [933.],
         [760.],
         [963.],
         [379.],
         [427.],...        [ 33.],
         [126.],
         [119.],
         [391.],
         [254.],
         [824.],
         [841.]]])
co_out = tensor([[[ 44.],
         [  0.],
         [239.],
         [  0.],
         [933.],
         [  0.],
         [760.],...        [  0.],
         [101.],
         [  0.],
         [866.],
         [  0.],
         [756.],
         [  0.]]])

    def check(self, fw_out, co_out):
        if not compare_with_golden(fw_out, co_out, self.pcc, self.rtol, self.atol, self.dissimilarity_threshold):
>           raise ValueError(
                f"Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model={fw_out}, compiled_model={co_out}"
            )
E           ValueError: Data mismatch -> AutomaticValueChecker (compare_with_golden): framework_model=tensor([[[ 44.],
E                    [239.],
E                    [933.],
E                    [760.],
E                    [963.],
E                    [379.],
E                    [427.],
E                    [503.],
E                    [497.],
E                    [683.],
E                    [101.],
E                    [866.],
E                    [756.]],
E           
E                   [[399.],
E                    [878.],
E                    [376.],
E                    [ 56.],
E                    [868.],
E                    [794.],
E                    [ 33.],
E                    [126.],
E                    [119.],
E                    [391.],
E                    [254.],
E                    [824.],
E                    [841.]]]), compiled_model=tensor([[[ 44.],
E                    [  0.],
E                    [239.],
E                    [  0.],
E                    [933.],
E                    [  0.],
E                    [760.],
E                    [  0.],
E                    [963.],
E                    [  0.],
E                    [379.],
E                    [  0.],
E                    [427.]],
E           
E                   [[  0.],
E                    [503.],
E                    [  0.],
E                    [497.],
E                    [  0.],
E                    [683.],
E                    [  0.],
E                    [101.],
E                    [  0.],
E                    [866.],
E                    [  0.],
E                    [756.],
E                    [  0.]]])

/opt/ttforge-toolchain/venv/lib/python3.10/site-packages/forge/verify/value_checkers.py:38: ValueError