Skip to content

Causal Impact but with MFLES and conformal prediction intervals

License

Notifications You must be signed in to change notification settings

tblume1992/ConformalImpact

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Conformal Impact

Take Causal Impact and replace the Bayesian Structural Time Series Model with MFLES and the Basyesian posterior with Conformal Prediction Intervals.

Quick Examnple an comparison to Causal Impact

intervention_effect = 400
np.random.seed(42)
series = np.random.random((130, 1)) * 400
x_series = series * .4 + np.random.random((130, 1)) * 50 + 1000
trend = (np.arange(1, 131)).reshape((-1, 1))
series += 10 * trend
series[-30:] = series[-30:] + intervention_effect

data = pd.DataFrame(np.column_stack([series, x_series]), columns=['y', 'x1'])

import matplotlib.pyplot as plt

plt.plot(series)
plt.plot(x_series)
plt.show()


from ConformalImpact.Model import CI


conformal_impact = CI(opt_size=20,
                      opt_steps=10,
                      opt_step_size=3)
impact_df = conformal_impact.fit(data,
                              n_windows=30,
                              intervention_index=100,
                              seasonal_period=None)

conformal_impact.summary()
conformal_impact.plot()





from causalimpact import CausalImpact

impact = CausalImpact(data, [0, 99], [100, 130])
impact.run()
impact.plot()
print(impact.summary())
output = impact.inferences
np.mean(output['point_effect'].values[-30:])

About

Causal Impact but with MFLES and conformal prediction intervals

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages