Recommendation v1.0.0
Closed issues:
- Initial features for implicit feedback recommendation (#1)
- Support BPR loss for matrix factorization (#30)
- Support loading
libsvm
data format (#32) - Reorganize unit tests with
@testsets
(#44) - Add synthetic user-item interaction generator for experiments (#46)
- Add coverage, diversity, and serendipity metrics for recommendation lists (#53)
Merged pull requests:
- Port
takuti/SyntheticImplicitFeedback.jl
tosynthetic.jl
(#47) (@takuti) - Add
load_libsvm_file
function to parse libsvm data (#48) (@takuti) - Refactor testing modules with
@testset
(#49) (@takuti) - Benchmark recommenders with
fit!
optimization and refactoring (#50) (@takuti) - Unify
predict
andranking
for simplicity (#51) (@takuti) - Add simple coverage metric between two lists (#54) (@takuti)
- Add aggregated non-accuracy metrics for diversity and novelty (#55) (@takuti)
- Implement intra-list diversity and serendipity metrics (#57) (@takuti)
- Implement BPR Matrix Factorization recommender (#59) (@takuti)
- Prepare for cross validation-based benchmarking (#60) (@takuti)
- Update/optimize evaluation modules with a benchmark script for testing multiple data-recommender-model pairs (#61) (@takuti)
- Optimize
recommend()
with bulk prediction (#64) (@takuti) - Update cross validation interfaces per recent updates on
evaluate()
(#65) (@takuti)