forked from mic-rud/GuidedDecoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
113 lines (96 loc) · 3.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import argparse
from training import Trainer
from evaluate import Evaluater
def get_args():
file_dir = os.path.dirname(__file__) #Directory of this path
parser = argparse.ArgumentParser(description='UpSampling for Monocular Depth Estimation')
#Mode
parser.set_defaults(train=False)
parser.set_defaults(evaluate=False)
parser.add_argument('--train',
dest='train',
action='store_true')
parser.add_argument('--eval',
dest='evaluate',
action='store_true')
#Data
parser.add_argument('--data_path',
type=str,
help='path to train data',
default=os.path.join(file_dir, 'kitti_comb'))
parser.add_argument('--test_path',
type=str,
help='path to test data',
default=os.path.join(file_dir, 'kitti_comb'))
parser.add_argument('--dataset',
type=str,
help='dataset for training',
choices=['kitti', 'nyu', 'nyu_reduced'],
default='kitti')
parser.add_argument('--resolution',
type=str,
help='Resolution of the images for training',
choices=['full', 'half', 'mini', 'tu_small', 'tu_big'],
default='half')
parser.add_argument('--eval_mode',
type=str,
help='Eval mode',
choices=['alhashim', 'tu'],
default='alhashim')
#Model
parser.add_argument('--model',
type=str,
help='name of the model to be trained',
default='UpDepth')
parser.add_argument('--weights_path',
type=str,
help='path to model weights')
#Checkpoint
parser.add_argument('--load_checkpoint',
type=str,
help='path to checkpoint',
default='')
parser.add_argument('--save_checkpoint',
type=str,
help='path to save checkpoints to',
default='./checkpoints')
parser.add_argument('--save_results',
type=str,
help='path to save results to',
default='./results')
#Optimization
parser.add_argument('--batch_size',
type=int,
help='batch size',
default=8)
parser.add_argument('--learning_rate',
type=float,
help='learning rate',
default=1e-4)
parser.add_argument('--num_epochs',
type=int,
help='number of epochs',
default=20)
parser.add_argument('--scheduler_step_size',
type=int,
help='step size of the scheduler',
default=15)
#System
parser.add_argument('--num_workers',
type=int,
help='number of dataloader workers',
default=2)
return parser.parse_args()
def main():
args = get_args()
print(args)
if args.train:
model_trainer = Trainer(args)
model_trainer.train()
args.weights_path = os.path.join(args.save_results, 'best_model.pth')
if args.evaluate:
evaluation_module = Evaluater(args)
evaluation_module.evaluate()
if __name__ == '__main__':
main()