About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the maximum value of a sorted single-precision floating-point strided array.
npm install @stdlib/stats-base-smaxsorted
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var smaxsorted = require( '@stdlib/stats-base-smaxsorted' );
Computes the maximum value of a sorted single-precision floating-point strided array x
.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
var v = smaxsorted( x.length, x, 1 );
// returns 3.0
x = new Float32Array( [ 3.0, 2.0, 1.0 ] );
v = smaxsorted( x.length, x, 1 );
// returns 3.0
The function has the following parameters:
- N: number of indexed elements.
- x: sorted input
Float32Array
. - strideX: stride length for
x
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the maximum value of every other element in x
,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, 3.0, 3.0, 4.0, 2.0 ] );
var v = smaxsorted( 4, x, 2 );
// returns 4.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array-float32' );
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, 2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = smaxsorted( 4, x1, 2 );
// returns 4.0
Computes the maximum value of a sorted single-precision floating-point strided array using alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
var v = smaxsorted.ndarray( x.length, x, 1, 0 );
// returns 3.0
The function has the following additional parameters:
- offsetX: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the maximum value for every other element in x
starting from the second element
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, 2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = smaxsorted.ndarray( 4, x, 2, 1 );
// returns 4.0
- If
N <= 0
, both functions returnNaN
. - The input strided array must be sorted in either strictly ascending or descending order.
var linspace = require( '@stdlib/array-linspace' );
var smaxsorted = require( '@stdlib/stats-base-smaxsorted' );
var options = {
'dtype': 'float32'
};
var x = linspace( -5.0, 5.0, 10, options );
console.log( x );
var v = smaxsorted( x.length, x, 1 );
console.log( v );
#include "stdlib/stats/base/smaxsorted.h"
Computes the maximum value of a sorted single-precision floating-point strided array.
const float x[] = { 1.0f, 2.0f, 3.0f };
float v = stdlib_strided_smaxsorted( 3, x, 1 );
// returns 3.0f
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
.
float stdlib_strided_smaxsorted( const CBLAS_INT N, const float *X, const CBLAS_INT strideX );
Computes the maximum value of a sorted single-precision floating-point strided array using alternative indexing semantics.
const float x[] = { 1.0f, 2.0f, 3.0f };
float v = stdlib_strided_smaxsorted_ndarray( 3, x, 1, 0 );
// returns 3.0f
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
.
float stdlib_strided_smaxsorted_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
#include "stdlib/stats/base/smaxsorted.h"
#include <stdio.h>
int main( void ) {
// Create a strided array:
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
// Specify the number of elements:
const int N = 4;
// Specify the stride length:
const int strideX = 2;
// Compute the maximum value:
float v = stdlib_strided_smaxsorted( N, x, strideX );
// Print the result:
printf( "max: %f\n", v );
}
@stdlib/stats-base/dmaxsorted
: calculate the maximum value of a sorted double-precision floating-point strided array.@stdlib/stats-base/maxsorted
: calculate the maximum value of a sorted strided array.@stdlib/stats-base/smax
: calculate the maximum value of a single-precision floating-point strided array.@stdlib/stats-base/sminsorted
: calculate the minimum value of a sorted single-precision floating-point strided array.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.