Skip to content

Commit

Permalink
Always pass numpy inputs to scikit-learn-intelex, rather than usm_nda…
Browse files Browse the repository at this point in the history
…rray that are not well supported currently
  • Loading branch information
fcharras committed Oct 18, 2023
1 parent d5cb1c4 commit 974d307
Showing 1 changed file with 49 additions and 27 deletions.
76 changes: 49 additions & 27 deletions benchmarks/kmeans/solvers/scikit_learn_intelex.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from contextlib import nullcontext
from importlib.metadata import version

from benchopt import BaseSolver, safe_import_context
Expand All @@ -6,9 +7,9 @@
with safe_import_context() as import_ctx:
# isort: off
import dpctl
import dpctl.tensor as dpt
import numpy as np
from sklearnex.cluster import KMeans
from sklearnex import config_context

# isort: on

Expand Down Expand Up @@ -78,23 +79,40 @@ def set_objective(
algorithm,
random_state,
):
# TODO: the overhead of the copy of the data from host to device could be
# eliminated if scikit-learn-intelex could just take usm_ndarray objects as
# input and directly run compute with the underlying memory buffer. The
# documentation at
# https://intel.github.io/scikit-learn-intelex/latest/oneapi-gpu.html#device-offloading # noqa
# suggests that it is the intended behavior, however in practice
# scikit-learn-intelex currently always perform underlying copies
# under the hood no matter what, and sometimes fails at doing so. See e.g.
# issue at
# https://github.com/intel/scikit-learn-intelex/issues/1534#issuecomment-1766266299 # noqa

# if self.runtime != "numpy":
# device = device = dpctl.SyclDevice(f"{self.runtime}:{self.device}")
# self.X = dpt.asarray(X, copy=True, device=device)

# if hasattr(sample_weight, "copy"):
# sample_weight = dpt.asarray(sample_weight, copy=True, device=device)

# if hasattr(init, "copy"):
# init = dpt.asarray(init, copy=True, device=device)
# else:
# self.X = X.copy()
# if hasattr(sample_weight, "copy"):
# sample_weight = sample_weight.copy()
# if hasattr(init, "copy"):
# init = init.copy()

# Copy the data before running the benchmark to ensure that no unfortunate
# side effects can happen
if self.runtime != "numpy":
device = device = dpctl.SyclDevice(f"{self.runtime}:{self.device}")
self.X = dpt.asarray(X, copy=True, device=device)

if hasattr(sample_weight, "copy"):
sample_weight = dpt.asarray(sample_weight, copy=True, device=device)

if hasattr(init, "copy"):
init = dpt.asarray(init, copy=True, device=device)
else:
self.X = X.copy()
if hasattr(sample_weight, "copy"):
sample_weight = sample_weight.copy()
if hasattr(init, "copy"):
init = init.copy()
self.X = X.copy()
if hasattr(sample_weight, "copy"):
sample_weight = sample_weight.copy()
if hasattr(init, "copy"):
init = init.copy()

self.sample_weight = sample_weight
self.init = init
Expand All @@ -120,17 +138,21 @@ def warm_up(self):
).fit(self.X, y=None, sample_weight=self.sample_weight)

def run(self, _):
estimator = KMeans(
n_clusters=self.n_clusters,
init=self.init,
n_init=self.n_init,
max_iter=self.max_iter,
tol=self.tol,
verbose=self.verbose,
random_state=self.random_state,
copy_x=False,
algorithm=self.algorithm,
).fit(self.X, y=None, sample_weight=self.sample_weight)
with nullcontext() if (self.runtime == "numpy") else config_context(
target_offload=f"{self.runtime}:{self.device}"
):
estimator = KMeans(
n_clusters=self.n_clusters,
init=self.init,
n_init=self.n_init,
max_iter=self.max_iter,
tol=self.tol,
verbose=self.verbose,
random_state=self.random_state,
copy_x=False,
algorithm=self.algorithm,
).fit(self.X, y=None, sample_weight=self.sample_weight)

self.inertia_ = estimator.inertia_
self.n_iter_ = estimator.n_iter_

Expand Down

0 comments on commit 974d307

Please sign in to comment.