Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ENH] Cyclic boosting interface #144

Merged
Merged
Show file tree
Hide file tree
Changes from 54 commits
Commits
Show all changes
56 commits
Select commit Hold shift + click to select a range
62a65b7
[NEW] Cyclic boosting interface
setoguchi-naoki Nov 10, 2023
91abf82
[ADD] initial test parameter
setoguchi-naoki Nov 10, 2023
3372bb1
[ADD] correspond Lablace distribution
setoguchi-naoki Nov 10, 2023
bec6e28
[ENH] Johnson Quantile-Parameterized Distribution
setoguchi-naoki Nov 15, 2023
d2434f9
[ENH] Cyclic Boosting soft dependency
setoguchi-naoki Nov 15, 2023
0c35297
[ENH] import QPD module
setoguchi-naoki Nov 15, 2023
4cd3429
[ENH] Cyclic boosting's description
setoguchi-naoki Nov 15, 2023
da522aa
[ENH] J_QPD's description
setoguchi-naoki Nov 15, 2023
c5346f1
[MOD] Tag of Cyclic boosting class
setoguchi-naoki Nov 15, 2023
089f6fe
[ENH] add J_QPD_S
setoguchi-naoki Nov 15, 2023
c5f3bbe
[fix] remove cdf_func duplication and use CB's QPD
setoguchi-naoki Nov 21, 2023
79cce98
[add] J_QPD_B class
setoguchi-naoki Nov 22, 2023
7e361c5
[mod] add predict median and quantile prediction()
setoguchi-naoki Nov 24, 2023
075b1f5
[add] import qpd_B
setoguchi-naoki Nov 27, 2023
da8b8f3
[add] predict_interval method
setoguchi-naoki Nov 27, 2023
15e00f6
[add] test, avoid duplication
setoguchi-naoki Nov 27, 2023
a80b070
[add] additive regressor mode
setoguchi-naoki Nov 27, 2023
e083c68
[mod] align coding rules
setoguchi-naoki Dec 15, 2023
7e38a3f
[mod] add docstring
setoguchi-naoki Dec 15, 2023
538140f
[mod] QPD_S, QPD_B
setoguchi-naoki Dec 15, 2023
43928ba
[mod] docstring
setoguchi-naoki Dec 15, 2023
b6e8a54
[mod] cyclic_boosting, 1.2.5
setoguchi-naoki Dec 22, 2023
a814771
[add] extended_J_QPDs
setoguchi-naoki Dec 22, 2023
9a3677c
[add] mode option for QPD
setoguchi-naoki Dec 22, 2023
d5006da
[mod] dependencies
setoguchi-naoki Dec 22, 2023
3a97eb4
[add] QPD_U
setoguchi-naoki Dec 22, 2023
b1a34c7
[mod] docstrings
setoguchi-naoki Dec 22, 2023
828dc78
isolate depedecy
fkiraly Dec 27, 2023
66f23e1
Merge branch '#132-feature-cyclic-boosting-interface' of https://gith…
fkiraly Dec 27, 2023
8f1a139
isolate dependencies
fkiraly Dec 27, 2023
bf127f5
further isolate deps
fkiraly Dec 27, 2023
608cfd2
linting
fkiraly Dec 27, 2023
a6c63f0
linting
fkiraly Dec 27, 2023
3e4fb2a
fix lower/upper param in qpd_B test params
fkiraly Dec 27, 2023
5e4df40
add python dependency tag to distrs
fkiraly Dec 27, 2023
f9c4cea
Update test_cyclic_boosting.py
fkiraly Dec 27, 2023
3ac8634
input treatment
fkiraly Dec 27, 2023
7f4d0bf
Merge branch 'main' into pr/144
fkiraly Jan 3, 2024
720a62d
bug fix
setoguchi-naoki Jan 11, 2024
c00bbed
[mod] test params
setoguchi-naoki Jan 11, 2024
b41b51d
[add] test_qpd.py
setoguchi-naoki Jan 11, 2024
50ea272
Merge branch 'main' into pr/144
fkiraly Jan 13, 2024
d5dba04
Update test_qpd.py
fkiraly Jan 13, 2024
51a4f8d
-[mod] attach python version<3.12 tag to cyclic boosting
setoguchi-naoki Jan 15, 2024
44da242
minor change
setoguchi-naoki Jan 15, 2024
c93b08f
Merge branch '#132-feature-cyclic-boosting-interface' of https://gith…
setoguchi-naoki Jan 15, 2024
0ad9a16
down dataset volume for test
setoguchi-naoki Jan 15, 2024
10347fb
modify paramters
setoguchi-naoki Jan 17, 2024
4ebcf43
add test for cyclic boosting with manual paramaters
setoguchi-naoki Jan 18, 2024
ffc02a4
mod docstring
setoguchi-naoki Jan 18, 2024
7bf3644
add new contributors
setoguchi-naoki Jan 18, 2024
4b27a8d
mod docstring
setoguchi-naoki Jan 18, 2024
6ad0f07
update SPT checking logic and fix pdf's bug
setoguchi-naoki Jan 23, 2024
441fd20
down iteration times along with test run time limitation
setoguchi-naoki Jan 24, 2024
190daa0
moved QPD to nonparametric
fkiraly Jan 25, 2024
365d013
Merge branch '#132-feature-cyclic-boosting-interface' of https://gith…
fkiraly Jan 25, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions .all-contributorsrc
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,27 @@
"doc",
"ideas"
]
},
{
"login": "FelixWick",
"name": "Felix Wick",
"avatar_url": "https://avatars.githubusercontent.com/u/7291058?v=4",
"profile": "https://github.com/FelixWick",
"contributions": [
"ideas",
"review"
]
},
{
"login": "setoguchi-naoki",
"name": "Naoki Setoguchi",
"avatar_url": "https://avatars.githubusercontent.com/u/104494531?v=4",
"profile": "https://github.com/setoguchi-naoki",
"contributions": [
"code",
"doc",
"test"
]
}
]
}
3 changes: 3 additions & 0 deletions docs/source/api_reference/distributions.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,9 @@ Parametric distributions
Laplace
Normal
TDistribution
QPD_U
QPD_S
QPD_B

Non-parametric and empirical distributions
------------------------------------------
Expand Down
8 changes: 8 additions & 0 deletions docs/source/api_reference/regression.rst
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,14 @@ take one or multiple ``sklearn`` estimators and adda probabilistic prediction mo

MapieRegressor

.. currentmodule:: skpro.regression.cyclic_boosting

.. autosummary::
:toctree: auto_generated/
:template: class.rst

CyclicBoosting

Linear regression
-----------------

Expand Down
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@ all_extras = [
"statsmodels>=0.12.1",
"tabulate",
"uncertainties",
"cyclic-boosting>=1.2.5; python_version < '3.12'"
]

dev = [
Expand Down
4 changes: 4 additions & 0 deletions skpro/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,14 @@
"Mixture",
"Normal",
"TDistribution",
"QPD_S",
"QPD_B",
"QPD_U",
]

from skpro.distributions.empirical import Empirical
from skpro.distributions.laplace import Laplace
from skpro.distributions.mixture import Mixture
from skpro.distributions.normal import Normal
from skpro.distributions.qpd import QPD_B, QPD_S, QPD_U
from skpro.distributions.t import TDistribution
Loading
Loading