-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
import csv | ||
import cv2 | ||
import glob | ||
import numpy as np | ||
import os | ||
import pandas as pd | ||
from matplotlib import pyplot as plt | ||
from PIL import Image | ||
from sklearn.cluster import DBSCAN | ||
|
||
|
||
def brainExtraction(): | ||
print("Brain Extraction Started") | ||
cwd = os.getcwd() | ||
pathToDataFolder = cwd+'\\testPatient' | ||
task1 = '\Slices' | ||
pathToTask1 = cwd+task1 | ||
if not os.path.exists(pathToTask1): | ||
os.makedirs(pathToTask1) | ||
|
||
for globalImage in glob.glob('%s\*_thresh.png' % pathToDataFolder): | ||
words = globalImage.split('_') | ||
words_len = len(words) | ||
global_image_number = words[words_len-2] | ||
org_img = cv2.imread(globalImage) | ||
img_gray = cv2.cvtColor(org_img, cv2.COLOR_BGR2GRAY) | ||
template = cv2.imread('template.png',0) | ||
w, h = template.shape[::-1] | ||
|
||
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED) | ||
threshold = 0.8 | ||
loc = np.where( res >= threshold) | ||
xstart = -1 | ||
xdiff = -10 | ||
ystart = -1 | ||
ydiff = -10 | ||
|
||
for pt in zip(*loc[::-1]): | ||
xtemp = pt[0] | ||
ytemp = pt[1]+h | ||
if(xstart == -1): | ||
xstart = xtemp | ||
if(ystart == -1): | ||
ystart = ytemp | ||
if(xdiff == -10 and xstart != xtemp): | ||
xdiff = xtemp - xstart | ||
if(ydiff == -10 and ystart != ytemp): | ||
ydiff = ytemp - ystart | ||
if(xstart != -1 and ystart != -1 and xdiff != -10 and ydiff != -10): | ||
break | ||
|
||
pathToEachImageFolder = pathToTask1+"\\"+str(global_image_number) | ||
if not os.path.exists(pathToEachImageFolder): | ||
os.makedirs(pathToEachImageFolder) | ||
os.chdir(pathToEachImageFolder) | ||
|
||
img1 = Image.open(globalImage) | ||
width, height = img1.size | ||
loc_img_count = 0 | ||
|
||
for y0 in range(ystart, height, ydiff): | ||
for x0 in range(xstart, width, xdiff): | ||
if(x0+xdiff < width and y0+ydiff < height): | ||
box = (x0+5, y0, | ||
x0+xdiff if x0+xdiff < width else width, | ||
y0+ydiff if y0+ydiff < height else height) | ||
img2 = img1.crop(box) | ||
extrema = img2.convert("L").getextrema() | ||
if extrema != (0, 0): | ||
loc_img_count = loc_img_count + 1 | ||
img1.crop(box).save('%d.png' % loc_img_count) | ||
os.chdir(cwd) | ||
print("Brain Extraction Ended") | ||
|
||
def detectClusters(): | ||
print("Detecting Clusters Started") | ||
cwd = os.getcwd() | ||
task1 = '\Slices' | ||
pathToTask1 = cwd+task1 | ||
task2 = '\Clusters' | ||
pathToTask2 = cwd+task2 | ||
if not os.path.exists(pathToTask2): | ||
os.makedirs(pathToTask2) | ||
|
||
folderNum = 0 | ||
while 1: | ||
folderNum = folderNum+1 | ||
pathToImageFolder = pathToTask1+"\\"+str(folderNum) | ||
if os.path.exists(pathToImageFolder): | ||
pathToEachImageFolder = pathToTask2+"\\"+str(folderNum) | ||
if not os.path.exists(pathToEachImageFolder): | ||
os.makedirs(pathToEachImageFolder) | ||
os.chdir(pathToEachImageFolder) | ||
|
||
if os.path.exists("CountReport.csv"): | ||
os.remove("CountReport.csv") | ||
f = open('CountReport.csv', 'w') | ||
writer = csv.writer(f, delimiter = ',') | ||
writer.writerow(["SliceNumber", "ClusterCount"]) | ||
|
||
for images in glob.glob('%s\*.png' % pathToImageFolder): | ||
imageBaseName = os.path.basename(images) | ||
words = imageBaseName.split('.') | ||
imageNumber = words[0] | ||
|
||
img = cv2.imread(images) | ||
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | ||
h, s, v = cv2.split(img_hsv) | ||
cluster = cv2.threshold(s, 92, 255, cv2.THRESH_BINARY)[1] | ||
imageName = imageNumber + '.png' | ||
cv2.imwrite(imageName, cluster) | ||
|
||
Y, X = np.where(cluster == 255) | ||
zipped = np.column_stack((X,Y)) | ||
cnt=0 | ||
|
||
if len(zipped) > 0: | ||
clustering = DBSCAN(eps = 5, min_samples = 5).fit(zipped) | ||
labels=clustering.labels_ | ||
ls, cs = np.unique(labels, return_counts = True) | ||
dic = dict(zip(ls, cs)) | ||
idx = [i for i, label in enumerate(labels) if dic[label] > 135 and label >= 0] | ||
|
||
counts = np.bincount(labels[labels >= 0]) | ||
for i in counts: | ||
if i > 135: | ||
cnt += 1 | ||
#print(imageNumber, cnt) | ||
writer.writerow([imageNumber, cnt]) | ||
else: | ||
#print(imageNumber, cnt) | ||
writer.writerow([imageNumber, cnt]) | ||
f.close() | ||
df = pd.read_csv("CountReport.csv") | ||
df.sort_values(by=["SliceNumber"], axis = 0, ascending = True, inplace = True) | ||
os.remove("CountReport.csv") | ||
df.to_csv('CountReport.csv', index=False) | ||
else: | ||
break | ||
os.chdir(cwd) | ||
print("Detecting Clusters Ended") |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
from clustering import * | ||
|
||
brainExtraction() | ||
detectClusters() |