-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
482 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import json | ||
import numpy as np | ||
import collections | ||
import tensorflow as tf | ||
|
||
from tensorflow.models.rnn.translate import seq2seq_model | ||
|
||
import pdb | ||
|
||
tf.app.flags.DEFINE_integer("ingredients_vocab_size", 1000, "Ingredients vocabulary size.") | ||
tf.app.flags.DEFINE_integer("recipes_vocab_size", 1000, "Recipes vocabulary size.") | ||
tf.app.flags.DEFINE_string("checkpoints_dir", "checkpoints/ingredients2recipes/", "Checkpoints dir") | ||
tf.app.flags.DEFINE_boolean("decode", False, "Set to True for interactive decoding.") | ||
|
||
FLAGS = tf.app.flags.FLAGS | ||
|
||
class Parser(): | ||
def __init__(self, file_path): | ||
self.file_path = file_path | ||
self.ingredient_size = 1000 | ||
self.extract() | ||
|
||
def extract(self): | ||
with open(self.file_path, "r") as f: | ||
lines = f.readlines() | ||
self.raw_data = [json.loads(line) for line in lines] | ||
|
||
self.all_ingredients = [] | ||
self.all_recipes = [] | ||
for recipe in self.raw_data: | ||
self.all_ingredients.extend([i[0] for i in recipe["ingredients"]]) | ||
self.all_recipes.extend(recipe["name"]) | ||
|
||
self.recipes_size = len(self.all_recipes) | ||
|
||
self.ingredients_counter = collections.Counter(self.all_ingredients) | ||
|
||
ingredients_count = [['UNK', -1]] | ||
ingredients_count.extend(self.ingredients_counter.most_common(self.ingredient_size - 1)) | ||
|
||
self.ingredient_dict = dict() | ||
for _ingredient, _ in ingredients_count: | ||
self.ingredient_dict[_ingredient] = len(self.ingredient_dict) | ||
|
||
self.reversed_dictionary = dict(zip(self.ingredient_dict.values(), self.ingredient_dict.keys())) | ||
|
||
def generate_batch(self, batch_size=64): | ||
recipes = np.random.choice(self.raw_data, batch_size, replace=False) | ||
input_data = [] | ||
output_data = [] | ||
for recipe in recipes: | ||
output_data.append(recipe["name"]) | ||
_group = [] | ||
for ingredient, _ in recipe["ingredients"]: | ||
if ingredient in self.ingredient_dict: | ||
_group.append(self.ingredient_dict[ingredient]) | ||
else: | ||
_group.append(0) | ||
input_data.append(_group) | ||
return input_data, output_data | ||
|
||
|
||
class Engine(): | ||
def __init__(self): | ||
self.parser = Parser("data/sitemap.json") | ||
self.batch_size = 64 | ||
self.size = 256 | ||
self.num_layers = 3 | ||
self.num_encoder_symbols = 1000 | ||
self.num_decoder_symbols = 1000 | ||
self.embedding_size = 200 | ||
|
||
def build_model(self): | ||
self.encoder_inputs = tf.placeholder(tf.int32, shape=[None], name="encoder") | ||
self.decoder_inputs = tf.placeholder(tf.int32, shape=[None], name="decoder") | ||
self.target_weights = tf.placeholder(tf.float32, shape=[None], name="weight") | ||
|
||
single_cell = tf.nn.rnn_cell.GRUCell(self.size) | ||
cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] * self.num_layers) | ||
|
||
return tf.nn.seq2seq.embedding_rnn_seq2seq(self.encoder_inputs, | ||
self.decoder_inputs, | ||
cell, | ||
self.num_encoder_symbols, | ||
self.num_decoder_sumbols, | ||
self.embedding_size) | ||
|
||
def train(self): | ||
with tf.Session() as sess: | ||
outputs, states = self.build_model() | ||
|
||
|
||
|
||
|
||
def main(_): | ||
engine = Engine() | ||
|
||
if FLAGS.decode: | ||
engine.decode() | ||
else: | ||
engine.train() | ||
|
||
if __name__ == "__main__": | ||
tf.app.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
'''Example script to generate text from Nietzsche's writings. | ||
At least 20 epochs are required before the generated text | ||
starts sounding coherent. | ||
It is recommended to run this script on GPU, as recurrent | ||
networks are quite computationally intensive. | ||
If you try this script on new data, make sure your corpus | ||
has at least ~100k characters. ~1M is better. | ||
''' | ||
|
||
from __future__ import print_function | ||
from keras.models import Sequential | ||
from keras.layers import Dense, Activation, Dropout | ||
from keras.layers import LSTM | ||
from keras.optimizers import RMSprop | ||
from keras.utils.data_utils import get_file | ||
import numpy as np | ||
import random | ||
import sys | ||
|
||
path = "/data/ptb/train.txt" | ||
text = open(path).read().lower() | ||
print('corpus length:', len(text)) | ||
|
||
chars = sorted(list(set(text))) | ||
print('total chars:', len(chars)) | ||
char_indices = dict((c, i) for i, c in enumerate(chars)) | ||
indices_char = dict((i, c) for i, c in enumerate(chars)) | ||
|
||
# cut the text in semi-redundant sequences of maxlen characters | ||
maxlen = 40 | ||
step = 3 | ||
sentences = [] | ||
next_chars = [] | ||
for i in range(0, len(text) - maxlen, step): | ||
sentences.append(text[i: i + maxlen]) | ||
next_chars.append(text[i + maxlen]) | ||
print('nb sequences:', len(sentences)) | ||
|
||
print('Vectorization...') | ||
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) | ||
y = np.zeros((len(sentences), len(chars)), dtype=np.bool) | ||
for i, sentence in enumerate(sentences): | ||
for t, char in enumerate(sentence): | ||
X[i, t, char_indices[char]] = 1 | ||
y[i, char_indices[next_chars[i]]] = 1 | ||
|
||
|
||
# build the model: a single LSTM | ||
print('Build model...') | ||
model = Sequential() | ||
model.add(LSTM(128, input_shape=(maxlen, len(chars)))) | ||
model.add(Dense(len(chars))) | ||
model.add(Activation('softmax')) | ||
|
||
optimizer = RMSprop(lr=0.01) | ||
model.compile(loss='categorical_crossentropy', optimizer=optimizer) | ||
|
||
|
||
def sample(preds, temperature=1.0): | ||
# helper function to sample an index from a probability array | ||
preds = np.asarray(preds).astype('float64') | ||
preds = np.log(preds) / temperature | ||
exp_preds = np.exp(preds) | ||
preds = exp_preds / np.sum(exp_preds) | ||
probas = np.random.multinomial(1, preds, 1) | ||
return np.argmax(probas) | ||
|
||
# train the model, output generated text after each iteration | ||
for iteration in range(1, 60): | ||
print() | ||
print('-' * 50) | ||
print('Iteration', iteration) | ||
model.fit(X, y, batch_size=128, nb_epoch=1) | ||
|
||
start_index = random.randint(0, len(text) - maxlen - 1) | ||
|
||
for diversity in [0.2, 0.5, 1.0, 1.2]: | ||
print() | ||
print('----- diversity:', diversity) | ||
|
||
generated = '' | ||
sentence = text[start_index: start_index + maxlen] | ||
generated += sentence | ||
print('----- Generating with seed: "' + sentence + '"') | ||
sys.stdout.write(generated) | ||
|
||
for i in range(400): | ||
x = np.zeros((1, maxlen, len(chars))) | ||
for t, char in enumerate(sentence): | ||
x[0, t, char_indices[char]] = 1. | ||
|
||
preds = model.predict(x, verbose=0)[0] | ||
next_index = sample(preds, diversity) | ||
next_char = indices_char[next_index] | ||
|
||
generated += next_char | ||
sentence = sentence[1:] + next_char | ||
|
||
sys.stdout.write(next_char) | ||
sys.stdout.flush() | ||
print() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
import json | ||
import codecs | ||
|
||
file_path = "data/sitemap.json" | ||
|
||
with open(file_path, "r") as f: | ||
lines = f.readlines() | ||
raw_data = [json.loads(line) for line in lines] | ||
|
||
ingredients_file_path = "data/ingredients" | ||
recipes_file_path = "data/recipes" | ||
|
||
ingredients_file = codecs.open(ingredients_file_path, "w", "utf-8-sig") | ||
recipes_file = codecs.open(recipes_file_path, "w", "utf-8-sig") | ||
|
||
for recipe in raw_data: | ||
recipe_name = recipe["name"] + "\n" | ||
ingredient_names = " ".join([i[0] for i in recipe["ingredients"]]) + "\n" | ||
|
||
ingredients_file.write(ingredient_names) | ||
recipes_file.write(recipe_name) | ||
|
||
ingredients_file.flush() | ||
ingredients_file.close() | ||
|
||
recipes_file.flush() | ||
recipes_file.close() |
Oops, something went wrong.