forked from huggingface/datasets
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Polyglot-NER Dataset (huggingface#641)
* add polyglot-ner * style * update field names * update dataset infos * style * style again... * fix dummy data
- Loading branch information
Showing
43 changed files
with
189 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
# coding=utf-8 | ||
# Copyright 2020 HuggingFace Datasets Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# Lint as: python3 | ||
"""The Polyglot-NER Dataset.""" | ||
|
||
from __future__ import absolute_import, division, print_function | ||
|
||
import os | ||
|
||
import datasets | ||
|
||
|
||
_CITATION = """\ | ||
@article{polyglotner, | ||
author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven}, | ||
title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition}, | ||
journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}}, | ||
month = {April}, | ||
year = {2015}, | ||
publisher = {SIAM}, | ||
} | ||
""" | ||
|
||
_LANGUAGES = [ | ||
"ca", | ||
"de", | ||
"es", | ||
"fi", | ||
"hi", | ||
"id", | ||
"ko", | ||
"ms", | ||
"pl", | ||
"ru", | ||
"sr", | ||
"tl", | ||
"vi", | ||
"ar", | ||
"cs", | ||
"el", | ||
"et", | ||
"fr", | ||
"hr", | ||
"it", | ||
"lt", | ||
"nl", | ||
"pt", | ||
"sk", | ||
"sv", | ||
"tr", | ||
"zh", | ||
"bg", | ||
"da", | ||
"en", | ||
"fa", | ||
"he", | ||
"hu", | ||
"ja", | ||
"lv", | ||
"no", | ||
"ro", | ||
"sl", | ||
"th", | ||
"uk", | ||
] | ||
|
||
_LANG_FILEPATHS = { | ||
lang: os.path.join( | ||
"acl_datasets", | ||
lang, | ||
"data" if lang != "zh" else "", # they're all lang/data/lang_wiki.conll except "zh" | ||
f"{lang}_wiki.conll", | ||
) | ||
for lang in _LANGUAGES | ||
} | ||
|
||
_DESCRIPTION = """\ | ||
Polyglot-NER | ||
A training dataset automatically generated from Wikipedia and Freebase the task | ||
of named entity recognition. The dataset contains the basic Wikipedia based | ||
training data for 40 languages we have (with coreference resolution) for the task of | ||
named entity recognition. The details of the procedure of generating them is outlined in | ||
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data | ||
corresponding to a different language. For example, "es" includes only spanish examples. | ||
""" | ||
|
||
_DATA_URL = "http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz" | ||
_HOMEPAGE_URL = "https://sites.google.com/site/rmyeid/projects/polylgot-ner" | ||
_VERSION = "1.0.0" | ||
|
||
|
||
class PolyglotNERConfig(datasets.BuilderConfig): | ||
def __init__(self, *args, languages=None, **kwargs): | ||
super().__init__(*args, version=datasets.Version(_VERSION, ""), **kwargs) | ||
self.languages = languages | ||
|
||
@property | ||
def filepaths(self): | ||
return [_LANG_FILEPATHS[lang] for lang in self.languages] | ||
|
||
|
||
class PolyglotNER(datasets.GeneratorBasedBuilder): | ||
"""The Polyglot-NER Dataset""" | ||
|
||
BUILDER_CONFIGS = [ | ||
PolyglotNERConfig(name=lang, languages=[lang], description=f"Polyglot-NER examples in {lang}.") | ||
for lang in _LANGUAGES | ||
] + [ | ||
PolyglotNERConfig( | ||
name="combined", languages=_LANGUAGES, description=f"Complete Polyglot-NER dataset with all languages." | ||
) | ||
] | ||
|
||
def _info(self): | ||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"lang": datasets.Value("string"), | ||
"words": datasets.Sequence(datasets.Value("string")), | ||
"ner": datasets.Sequence(datasets.Value("string")), | ||
} | ||
), | ||
supervised_keys=None, | ||
homepage=_HOMEPAGE_URL, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager): | ||
"""Returns SplitGenerators.""" | ||
path = dl_manager.download_and_extract(_DATA_URL) | ||
|
||
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"datapath": path})] | ||
|
||
def _generate_examples(self, datapath): | ||
sentence_counter = 0 | ||
for filepath, lang in zip(self.config.filepaths, self.config.languages): | ||
filepath = os.path.join(datapath, filepath) | ||
with open(filepath, encoding="utf-8") as f: | ||
current_words = [] | ||
current_ner = [] | ||
for row in f: | ||
row = row.rstrip() | ||
if row: | ||
token, label = row.split("\t") | ||
current_words.append(token) | ||
current_ner.append(label) | ||
else: | ||
# New sentence | ||
if not current_words: | ||
# Consecutive empty lines will cause empty sentences | ||
continue | ||
assert len(current_words) == len(current_ner), "💔 between len of words & ner" | ||
sentence = ( | ||
sentence_counter, | ||
{ | ||
"id": str(sentence_counter), | ||
"lang": lang, | ||
"words": current_words, | ||
"ner": current_ner, | ||
}, | ||
) | ||
sentence_counter += 1 | ||
current_words = [] | ||
current_ner = [] | ||
yield sentence | ||
# Don't forget last sentence in dataset 🧐 | ||
if current_words: | ||
yield sentence_counter, { | ||
"id": str(sentence_counter), | ||
"lang": lang, | ||
"words": current_words, | ||
"ner": current_ner, | ||
} |