-
Notifications
You must be signed in to change notification settings - Fork 0
baselineMethods
Aditya Singh edited this page May 12, 2021
·
5 revisions
def diarizationOracleNumSpkrs(audio_dataset, method="KMeans"):
Defined in baselineMethods.py
Predict the diarization labels using the oracle number of speakers for all the audio files in audio_dataset with KMeans/ Spectral clustering algorithm.
Parameters:
Argument | Detail |
---|---|
audio_dataset: |
utils.DiarizationDataset, Diarization dataset |
method: |
str, Name of the method to be used for clustering part. Supports: "KMeans" or "Spectral" |
Returns:
Variable | Detail |
---|---|
hypothesis_dir: |
str, Directory where all the predicted RTTM diarization files are saved |
def diarizationEigenGapNumSpkrs(audio_dataset):
Defined in baselineMethods.py
Predict the diarization labels using for all the audio files in audio_dataset with Spectral clustering algorithm. It uses Eigen principle to predict the optimal number of speakers. The module uses already implented spectral algorithm from here: https://github.com/wq2012/SpectralCluster
Parameters:
Argument | Detail |
---|---|
audio_dataset: |
utils.DiarizationDataset, Diarization dataset |
Returns:
Variable | Detail |
---|---|
hypothesis_dir: |
str, Directory where all the predicted RTTM diarization files are saved |