remove attempt to coerce scalar to basering for truediv #17995
Annotations
4 errors and 3 warnings
Test changed files (sage -t --new):
src/sage/rings/polynomial/padics/polynomial_padic_capped_relative_dense.py#L1
sage: K = Qp(13,7) ## line 43 ##
sage: R.<t> = K[] ## line 44 ##
sage: R([K(13), K(1)]) ## line 45 ##
(1 + O(13^7))*t + 13 + O(13^8)
sage: T.<t> = ZZ[] ## line 47 ##
sage: R(t + 2) ## line 48 ##
(1 + O(13^7))*t + 2 + O(13^7)
sage: f = R.zero() ## line 53 ##
sage: R(f.monomial_coefficients()) ## line 54 ##
0
sage: R.<x> = PolynomialRing(ZZ) ## line 59 ##
sage: f = x + 5 ## line 60 ##
sage: S.<y> = PolynomialRing(Qp(5)) ## line 61 ##
sage: g2 = S(f) ## line 62 ##
sage: 25*g2 ## line 63 ##
|
Test changed files (sage -t --new):
src/sage/rings/polynomial/polynomial_element.pyx#L2756
Failed example:: Got:
Traceback (most recent call last):
File "/sage/src/sage/doctest/forker.py", line 728, in _run
self.compile_and_execute(example, compiler, test.globs)
File "/sage/src/sage/doctest/forker.py", line 1152, in compile_and_execute
exec(compiled, globs)
File "<doctest sage.rings.polynomial.polynomial_element.Polynomial.__truediv__[20]>", line 1, in <module>
x/Integer(5) # needs sage.rings.finite_rings
File "sage/rings/polynomial/polynomial_element.pyx", line 2773, in sage.rings.polynomial.polynomial_element.Polynomial.__truediv__
return wrapperdescr_fastcall(RingElement.__truediv__,
File "sage/cpython/wrapperdescr.pyx", line 104, in sage.cpython.wrapperdescr.wrapperdescr_fastcall
return slotdef.wrapper(self, args, slotwrapper.d_wrapped)
File "sage/structure/element.pyx", line 1731, in sage.structure.element.Element.__truediv__
return coercion_model.bin_op(left, right, truediv)
File "sage/structure/coerce.pyx", line 1230, in sage.structure.coerce.CoercionModel.bin_op
return (<Action>action)._act_(y, x)
File "sage/categories/action.pyx", line 507, in sage.categories.action.PrecomposedAction._act_
return self._action._act_(g, x)
File "sage/categories/action.pyx", line 417, in sage.categories.action.InverseAction._act_
return self._action._act_(~g, x)
File "sage/rings/finite_rings/integer_mod.pyx", line 2859, in sage.rings.finite_rings.integer_mod.IntegerMod_int.__invert__
raise ZeroDivisionError(f"inverse of Mod({self}, {self._modulus.sageInteger}) does not exist")
ZeroDivisionError: inverse of Mod(0, 5) does not exist
|
Test changed files (sage -t --new):
src/sage/rings/polynomial/polynomial_element.pyx#L1
sage: R.<x> = ZZ[] ## line 6 ##
sage: f = x^5 + 2*x^2 + (-1) ## line 7 ##
sage: f == loads(dumps(f)) ## line 8 ##
True
sage: PolynomialRing(ZZ,'x').objgen() ## line 11 ##
(Univariate Polynomial Ring in x over Integer Ring, x)
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 46 ##
0
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial ## line 145 ##
sage: R.<x> = ZZ[] ## line 146 ##
sage: is_Polynomial(x^3 + x + 1) ## line 147 ##
doctest:warning
File "<doctest sage.rings.polynomial.polynomial_element.is_Polynomial[2]>", line 1, in <module>
is_Polynomial(x**Integer(3) + x + Integer(1))
File "/sage/src/sage/misc/superseded.py", line 138, in deprecation_cython
warning(issue_number, message, DeprecationWarning, stacklevel)
File "/sage/src/sage/misc/superseded.py", line 180, in warning
warn(message, warning_class, stacklevel)
File "/usr/lib/python3.10/warnings.py", line 109, in _showwarnmsg
sw(msg.message, msg.category, msg.filename, msg.lineno,
:
DeprecationWarning: the function is_Polynomial is deprecated; use isinstance(x, sage.rings.polynomial.polynomial_element.Polynomial) instead
See https://github.com/sagemath/sage/issues/32709 for details.
True
sage: S.<y> = R[] ## line 152 ##
sage: f = y^3 + x*y - 3*x; f ## line 153 ##
y^3 + x*y - 3*x
sage: is_Polynomial(f) ## line 155 ##
True
sage: R.<x,y> = QQ[] ## line 162 ##
sage: f = y^3 + x*y - 3*x; f ## line 163 ##
y^3 + x*y - 3*x
sage: is_Polynomial(f) ## line 165 ##
False
sage: var('x,y') ## line 169 ##
(x, y)
sage: f = y^3 + x*y - 3*x; f ## line 171 ##
y^3 + x*y - 3*x
sage: is_Polynomial(f) ## line 173 ##
False
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 175 ##
0
sage: R.<y> = QQ['y'] ## line 191 ##
sage: S.<x> = R['x'] ## line 192 ##
sage: S ## line 193 ##
Univariate Polynomial Ring in x over Univariate Polynomial Ring in y over Rational Field
sage: f = x*y; f ## line 196 ##
y*x
sage: type(f) ## line 198 ##
<class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: p = (y+1)^10; p(1) ## line 200 ##
1024
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 209 ##
0
sage: R.<x> = ZZ[] ## line 219 ##
sage: f = x^5 + 2*x^2 + (-1); f ## line 220 ##
x^5 + 2*x^2 - 1
sage: f^2 ## line 222 ##
x^10 + 4*x^7 - 2*x^5 + 4*x^4 - 4*x^2 + 1
sage: R.<x> = ZZ[ ]; R ## line 228 ##
Univariate Polynomial Ring in x over Integer Ring
sage: S.<Z> = R[ ]; S ## line 230 ##
Univariate Polynomial Ring in Z over Univariate Polynomial Ring in x over Integer Ring
sage: f = Z^3 + (x^2-2*x+1)*Z - 3; f ## line 232 ##
Z^3 + (x^2 - 2*x + 1)*Z - 3
sage: f*f ## line 234 ##
Z^6 + (2*x^2 - 4*x + 2)*Z^4 - 6*Z^3 + (x^4 - 4*x^3 + 6*x^2 - 4*x + 1)*Z^2 + (-6*x^2 + 12*x - 6)*Z + 9
sage: f^3 == f*f*f ## line 236 ##
True
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 238 ##
0
sage: R = ZZ['x'] ## line 262 ##
sage: p = R([1,2,3,4]) ## line 263 ##
sage: q = R([4,-3,2,-1]) ## line 264 ##
sage: p + q # indirect doctest ## line 265 ##
3*x^3 + 5*x^2 - x + 5
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 267 ##
0
sage: R = GF(2)['x']['y'] ## line 294 ##
sage: R([0,1]).is_zero() ## line 295 ##
False
sage: R([0]).is_zero() ## line 297 ##
True
sage: R([-1]).is_zero() ## line 299 ##
False
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 301 ##
0
sage: R.<x> = QQ[] ## line 310 ##
sage: (x - 3).is_one() ## line 311 ##
False
sage: R(1).is_one() ## line 313 ##
True
sage: R2.<y> = R[] ## line 316 ##
sage: R2(x).is_one() ## line 317 ##
False
sage: R2(1).is_one() ## line 319 ##
True
sage: R2(-1).is_one() ## line 321 ##
False
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 323 ##
0
sage: x = polygen(GF(389)) ## line 342 ##
sage: plot(x^2 + 1, rgbcolor=(0,0,1)) # needs sage.plot ## line 343 ##
Graphics object consisting of 1 graphics primitive
sage: x = polygen(QQ) ## line 345 ##
sage: plot(x^2 + 1, rgbcolor=(1,0,0))
|
Test changed files (sage -t --new)
Process completed with exit code 64.
|
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
Post Checkout
The process '/usr/bin/git' failed with exit code 128
|
Get changed files and packages
fatal: no submodule mapping found in .gitmodules for path 'subprojects/factory'
|
Loading