-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
187 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
use gauss_quad::GaussLegendre; | ||
use ndarray::Array1; | ||
use ndarray::{concatenate, prelude::*}; | ||
use ndarray_rand::RandomExt; | ||
use ndrustfft::{ndfft, FftHandler}; | ||
use num_complex::{Complex64, ComplexDistribution}; | ||
use rand_distr::StandardNormal; | ||
use statrs::function::gamma::gamma; | ||
|
||
/// Isonormal process | ||
/// | ||
/// The Isonormal process is a generalization of the fractional Brownian motion (fBM) process. | ||
/// It represents a Gaussian process defined by an underlying inner product space, where the covariance | ||
/// structure of the process is governed by an inner product on that space. In mathematical terms, | ||
/// an Isonormal process \( X(\varphi) \) is a Gaussian family of random variables indexed by elements | ||
/// \( \varphi \) from a Hilbert space \( \mathcal{H} \), such that for all \( \varphi_1, \varphi_2 \in \mathcal{H} \): | ||
/// | ||
/// \[ \mathbb{E}[X(\varphi_1) X(\varphi_2)] = \langle \varphi_1, \varphi_2 \rangle_{\mathcal{H}} \] | ||
/// | ||
/// The fractional Brownian motion (fBM) is a special case of the Isonormal process when the inner product | ||
/// represents the covariance structure of the fBM increments. | ||
/// | ||
/// # Example | ||
/// | ||
/// ```rust | ||
/// let inner_product = |aux_idx: usize, idx: usize| -> f64 { | ||
/// fbm_custom_inc_cov(idx, 0.7) | ||
/// }; | ||
/// let index_functions = vec![1, 2, 3, 4, 5]; | ||
/// let iso_normal = ISONormal::new(inner_product, "fft", index_functions); | ||
/// ``` | ||
/// | ||
/// In this example, an Isonormal process is defined using the fractional Brownian motion covariance increments. | ||
/// | ||
pub struct ISONormal<F> | ||
where | ||
F: Fn(usize, usize) -> f64, | ||
{ | ||
inner_product: F, | ||
index_functions: Vec<usize>, | ||
inner_product_structure: Option<Array1<f64>>, | ||
covariance_matrix_sqrt: Option<Array1<Complex64>>, | ||
} | ||
|
||
impl<F> ISONormal<F> | ||
where | ||
F: Fn(usize, usize) -> f64, | ||
{ | ||
pub fn new(inner_product: F, index_functions: Vec<usize>) -> Self { | ||
ISONormal { | ||
inner_product, | ||
index_functions, | ||
inner_product_structure: None, | ||
covariance_matrix_sqrt: None, | ||
} | ||
} | ||
|
||
fn set_inner_product_structure(&mut self) { | ||
let inner_product_structure = Array1::from( | ||
(0..self.index_functions.len()) | ||
.map(|k| (self.inner_product)(self.index_functions[0], self.index_functions[k])) | ||
.collect::<Vec<f64>>(), | ||
); | ||
|
||
self.inner_product_structure = Some(inner_product_structure); | ||
} | ||
|
||
fn set_covariance_matrix_sqrt(&mut self) { | ||
let inner_product_structure_embedding = | ||
|inner_product_structure: &Array1<f64>| -> Array1<Complex64> { | ||
let fft = FftHandler::new(inner_product_structure.len() * 2 - 2); | ||
let input = concatenate( | ||
Axis(0), | ||
&[ | ||
inner_product_structure.view(), | ||
inner_product_structure | ||
.slice(s![..;-1]) | ||
.slice(s![1..-1]) | ||
.view(), | ||
], | ||
) | ||
.unwrap(); | ||
|
||
let input = input.mapv(|v| Complex64::new(v, 0.0)); | ||
let mut embedded_inner_product_structure = | ||
Array1::<Complex64>::zeros(inner_product_structure.len() * 2 - 2); | ||
ndfft(&input, &mut embedded_inner_product_structure, &fft, 0); | ||
let embedded_inner_product_structure = embedded_inner_product_structure.mapv(|x| { | ||
Complex64::new( | ||
(x.re / (2.0 * (inner_product_structure.len() - 1) as f64)).sqrt(), | ||
x.im, | ||
) | ||
}); | ||
|
||
embedded_inner_product_structure | ||
}; | ||
|
||
let embedded_inner_product_matrix = | ||
inner_product_structure_embedding(self.inner_product_structure.as_ref().unwrap()); | ||
|
||
self.covariance_matrix_sqrt = Some(embedded_inner_product_matrix); | ||
} | ||
|
||
pub fn get_path(&mut self) -> Array1<f64> { | ||
self.set_inner_product_structure(); | ||
self.set_covariance_matrix_sqrt(); | ||
let fft = FftHandler::new(self.covariance_matrix_sqrt.as_ref().unwrap().len()); | ||
let normal = Array1::random( | ||
self.covariance_matrix_sqrt.as_ref().unwrap().len(), | ||
ComplexDistribution::new(StandardNormal, StandardNormal), | ||
); | ||
let mut path = Array1::<Complex64>::zeros(self.covariance_matrix_sqrt.as_ref().unwrap().len()); | ||
ndfft( | ||
&(&*self.covariance_matrix_sqrt.as_ref().unwrap() * &normal), | ||
&mut path, | ||
&fft, | ||
0, | ||
); | ||
let path = path.mapv(|x| x.re); | ||
let path = path.slice(s![1..self.inner_product_structure.as_ref().unwrap().len()]); | ||
path.into_owned() | ||
} | ||
} | ||
|
||
/// Ornstein-Uhlenbeck kernel function | ||
fn ker_ou(t: f64, u: f64, alpha: f64) -> f64 { | ||
if u <= t { | ||
(-(alpha * (t - u))).exp() | ||
} else { | ||
0.0 | ||
} | ||
} | ||
|
||
/// Fractional Brownian Motion covariance increments | ||
pub fn fbm_custom_inc_cov(idx: usize, hurst: f64) -> f64 { | ||
if idx != 0 { | ||
0.5 | ||
* (((idx + 1) as f64).powf(2.0 * hurst) - 2.0 * (idx as f64).powf(2.0 * hurst) | ||
+ ((idx - 1) as f64).powf(2.0 * hurst)) | ||
} else { | ||
1.0 | ||
} | ||
} | ||
|
||
// ARFIMA autocovariance function | ||
fn arfima_acf(idx: i32, d: f64, sigma: f64) -> f64 { | ||
if idx == 0 { | ||
sigma.powi(2) * gamma(1.0 - 2.0 * d) / (gamma(1.0 - d).powi(2)) | ||
} else { | ||
sigma.powi(2) * (gamma(idx as f64 + d) * gamma(1.0 - 2.0 * d)) | ||
/ (gamma(idx as f64 - d + 1.0) * gamma(1.0 - d) * gamma(d)) | ||
} | ||
} | ||
|
||
// L2 inner product function using quad for numerical integration | ||
fn l2_unit_inner_product<F1, F2>(function1: F1, function2: F2) -> f64 | ||
where | ||
F1: Fn(f64) -> f64, | ||
F2: Fn(f64) -> f64, | ||
{ | ||
let integrand = |u: f64| function1(u) * function2(u); | ||
|
||
// Use quad to perform the integration between 0 and 1 | ||
let quad = GaussLegendre::new(5).unwrap(); | ||
let integral = quad.integrate(0.0, 1.0, integrand); | ||
|
||
integral | ||
} | ||
|
||
/// | ||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
|
||
#[test] | ||
fn isonormal_fbm() { | ||
let inner_product = |_: usize, idx: usize| -> f64 { fbm_custom_inc_cov(idx, 0.7) }; | ||
let index_functions = vec![1, 2, 3, 4]; | ||
let mut isonormal = ISONormal::new(inner_product, index_functions); | ||
let path = isonormal.get_path(); | ||
println!("inner {:?}", isonormal.inner_product_structure); | ||
println!("cov {:?}", isonormal.covariance_matrix_sqrt); | ||
println!("path {:?}", path); | ||
} | ||
} |