Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update countrypops dataset #1874

Merged
merged 13 commits into from
Sep 4, 2024
1 change: 1 addition & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Generated by roxygen2: do not edit by hand

S3method("$",gt_option)
S3method(add_text_style,character)
S3method(add_text_style,shiny.tag)
S3method(as.data.frame,gt_tbl)
Expand Down
11 changes: 8 additions & 3 deletions R/cols_align.R
Original file line number Diff line number Diff line change
Expand Up @@ -78,9 +78,14 @@
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "San Marino") |>
#' dplyr::slice_tail(n = 5) |>
#' gt(rowname_col = "year", groupname_col = "country_name") |>
#' dplyr::filter(
#' country_name == "San Marino",
#' year %in% 2017:2021
#' ) |>
#' gt(
#' rowname_col = "year",
#' groupname_col = "country_name"
#' ) |>
#' cols_align(
#' align = "left",
#' columns = population
Expand Down
18 changes: 12 additions & 6 deletions R/cols_hide.R
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,10 @@
#'
#' ```r
#' countrypops |>
#' dplyr::filter(country_name == "Egypt") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Egypt",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_hide(columns = c(country_code_2, country_code_3))
#' ```
Expand All @@ -86,8 +88,10 @@
#'
#' ```r
#' countrypops |>
#' dplyr::filter(country_name == "Pakistan") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Pakistan",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_hide(columns = c(country_code_3, population)) |>
#' tab_footnote(
Expand Down Expand Up @@ -189,8 +193,10 @@ cols_hide <- function(
#' ```r
#' tab_1 <-
#' countrypops |>
#' dplyr::filter(country_name == "Singapore") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Singapore",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_hide(columns = c(country_code_2, country_code_3))
#'
Expand Down
12 changes: 8 additions & 4 deletions R/cols_label.R
Original file line number Diff line number Diff line change
Expand Up @@ -142,8 +142,10 @@
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "Uganda") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Uganda",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_label(
#' country_name = "Name",
Expand All @@ -164,8 +166,10 @@
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "Uganda") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Uganda",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_label(
#' country_name = md("**Name**"),
Expand Down
30 changes: 20 additions & 10 deletions R/cols_move.R
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,10 @@
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "Japan") |>
#' dplyr::slice_tail(n = 10) |>
#' dplyr::filter(
#' country_name == "Japan",
#' year %in% 2012:2021
#' ) |>
#' gt() |>
#' cols_move(
#' columns = population,
Expand Down Expand Up @@ -214,8 +216,10 @@ cols_move <- function(
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "Fiji") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Fiji",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_move_to_start(columns = year)
#' ```
Expand All @@ -231,8 +235,10 @@ cols_move <- function(
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "Fiji") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Fiji",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_move_to_start(columns = c(year, population))
#' ```
Expand Down Expand Up @@ -336,8 +342,10 @@ cols_move_to_start <- function(
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "Benin") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Benin",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_move_to_end(columns = year)
#' ```
Expand All @@ -353,8 +361,10 @@ cols_move_to_start <- function(
#' ```r
#' countrypops |>
#' dplyr::select(-contains("code")) |>
#' dplyr::filter(country_name == "Benin") |>
#' dplyr::slice_tail(n = 5) |>
#' dplyr::filter(
#' country_name == "Benin",
#' year %in% 2017:2021
#' ) |>
#' gt() |>
#' cols_move_to_end(columns = c(year, country_name))
#' ```
Expand Down
12 changes: 8 additions & 4 deletions R/data_color.R
Original file line number Diff line number Diff line change
Expand Up @@ -439,9 +439,11 @@
#'
#' ```r
#' countrypops |>
#' dplyr::filter(country_name == "Bangladesh") |>
#' dplyr::select(-contains("code")) |>
#' dplyr::slice_tail(n = 10) |>
#' dplyr::filter(
#' country_name == "Bangladesh",
#' year %in% 2012:2021
#' ) |>
#' gt() |>
#' data_color(
#' columns = population,
Expand All @@ -464,9 +466,11 @@
#'
#' ```r
#' countrypops |>
#' dplyr::filter(country_name == "Bangladesh") |>
#' dplyr::select(-contains("code")) |>
#' dplyr::slice_tail(n = 10) |>
#' dplyr::filter(
#' country_name == "Bangladesh",
#' year %in% 2012:2021
#' ) |>
#' gt() |>
#' data_color(
#' columns = population,
Expand Down
9 changes: 5 additions & 4 deletions R/datasets.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,18 +22,19 @@
#------------------------------------------------------------------------------#


#' Yearly populations of countries from 1960 to 2022
#' Yearly populations of countries from 1960 to 2023
#'
#' @description
#'
#' A dataset that presents yearly, total populations of countries. Total
#' population is based on counts of all residents regardless of legal status or
#' citizenship. Country identifiers include the English-language country names,
#' and the 2- and 3-letter ISO 3166-1 country codes. Each row contains a
#' `population` value for a given `year` (from 1960 to 2022). Any `NA` values
#' for `populations` indicate the non-existence of the entity during that year.
#' `population` value for a given `year` (from 1960 to 2023). Any `NA` values
#' within `population` indicate the non-existence of the entity during that
#' year.
#'
#' @format A tibble with 13,545 rows and 5 variables:
#' @format A tibble with 13,760 rows and 5 variables:
#' \describe{
#' \item{country_name}{The name of the country.}
#' \item{country_code_2, country_code_3}{The 2- and 3-letter ISO 3166-1 country
Expand Down
2 changes: 1 addition & 1 deletion R/format_data.R
Original file line number Diff line number Diff line change
Expand Up @@ -8005,7 +8005,7 @@ get_image_hw_ratio <- function(filepath) {
#' make this work seamlessly, the input cells need to contain some reference to
#' a country, and this can be in the form of a 2- or 3-letter ISO 3166-1 country
#' code (e.g., Egypt has the `"EG"` country code). This function will parse the
#' targeted body cells for those codes (and the [countrypops] dataset contains
#' targeted body cells for those codes (and the [`countrypops`] dataset contains
#' all of them) and insert the appropriate flag graphics.
#'
#' Multiple flags can be included per cell by separating country codes with
Expand Down
5 changes: 3 additions & 2 deletions data-raw/01-countrypops.R
Original file line number Diff line number Diff line change
Expand Up @@ -69,9 +69,10 @@ countrypops <-
`2019` = col_integer(),
`2020` = col_integer(),
`2021` = col_integer(),
`2022` = col_integer()
`2022` = col_integer(),
`2023` = col_integer()
), na = character()
) %>%
tidyr::gather("year", "population", `1960`:`2022`) %>%
tidyr::gather("year", "population", `1960`:`2023`) %>%
dplyr::arrange(country_code_3, year) %>%
dplyr::mutate(year = as.integer(year))
Loading
Loading