Skip to content

realWang-Wei/MNIST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MNIST

Introduction

MNIST is a classic data set in the field of machine learning and deep learning. There are many methods for this data set. Here are some methods for reference.

the data resource is kaggle Digit Recognizer

Algorithms

  • ML

    • SVM
    • DecesionTree
    • RandomForest
    • KNeighbors
    • Adaboost
    • XGBoost
    • catboost
    • lgbm
  • DL

    • FC
    • CNN(VGG16)
    • LSTM
    • BLS

Score on test data

here is the kaggle Digit Recongizer

The accuracy is verified in the kaggle competition, and all algorithms have not been adjusted or optimized.

Test on: GPU: Tesla P100 x1 CPU: 8 kernels, 64G RAM

Algorithm Score Time Cost for training/s
SVM 0.11614 8504
DecisionTree 0.85585 10.90
RandomForest 0.94142 2.61
KNeighbors 0.96800 5.63
Adaboost 0.72914 23.32
XGBoost
catboost
lgbm
neural network with numpy 0.92214 662 (10 epochs)
VGG16 0.98828 676 (32 epochs)
LSTM 0.90785 1447 (32 epochs)
BLS 0.93471 30.43

About

使用多种方法解决MNSIT问题

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages