-
Notifications
You must be signed in to change notification settings - Fork 55
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fixed documentation and eval script for Torch EfficientNet-lite0 mode…
…l, added eval script for Tensorflow Resnet50 model Signed-off-by: Bharath Ramaswamy <[email protected]>
- Loading branch information
1 parent
154f372
commit 722a1ba
Showing
5 changed files
with
239 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
#! /usr/bin/env python3.6 | ||
# -*- mode: python -*- | ||
# ============================================================================= | ||
# @@-COPYRIGHT-START-@@ | ||
# | ||
# Copyright (c) 2019-2020, Qualcomm Innovation Center, Inc. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions are met: | ||
# | ||
# 1. Redistributions of source code must retain the above copyright notice, | ||
# this list of conditions and the following disclaimer. | ||
# | ||
# 2. Redistributions in binary form must reproduce the above copyright notice, | ||
# this list of conditions and the following disclaimer in the documentation | ||
# and/or other materials provided with the distribution. | ||
# | ||
# 3. Neither the name of the copyright holder nor the names of its contributors | ||
# may be used to endorse or promote products derived from this software | ||
# without specific prior written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | ||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
# POSSIBILITY OF SUCH DAMAGE. | ||
# | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
# | ||
# @@-COPYRIGHT-END-@@ | ||
# ============================================================================= | ||
|
||
import os | ||
import sys | ||
import json | ||
import argparse | ||
from tqdm import tqdm | ||
from glob import glob | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
import aimet_common.defs | ||
from aimet_tensorflow import quantsim | ||
from aimet_tensorflow.cross_layer_equalization import GraphSearchUtils, equalize_model | ||
from aimet_tensorflow.bias_correction import BiasCorrectionParams, BiasCorrection, QuantParams | ||
from aimet_tensorflow.quantsim import save_checkpoint, QuantizationSimModel | ||
from aimet_tensorflow.batch_norm_fold import fold_all_batch_norms | ||
|
||
from nets import nets_factory | ||
from preprocessing import preprocessing_factory | ||
from deployment import model_deploy | ||
from datasets import dataset_factory | ||
|
||
def wrap_preprocessing(preprocessing, height, width, num_classes, labels_offset): | ||
'''Wrap preprocessing function to do parsing of TFrecords. | ||
''' | ||
def parse(serialized_example): | ||
features = tf.parse_single_example(serialized_example, features={ | ||
'image/class/label': tf.FixedLenFeature([], tf.int64), | ||
'image/encoded': tf.FixedLenFeature([], tf.string) | ||
}) | ||
|
||
image_data = features['image/encoded'] | ||
image = tf.image.decode_jpeg(image_data, channels=3) | ||
label = tf.cast(features['image/class/label'], tf.int32) | ||
label = label - labels_offset | ||
|
||
labels = tf.one_hot(indices=label, depth=num_classes) | ||
image = preprocessing(image, height, width) | ||
return image, labels | ||
return parse | ||
|
||
def run_evaluation(args): | ||
# Build graph definition | ||
with tf.Graph().as_default(): | ||
# Create iterator | ||
tf_records = glob(args.dataset_dir + '/validation*') | ||
preprocessing_fn = preprocessing_factory.get_preprocessing(args.model_name, is_training=False) | ||
parse_function = wrap_preprocessing(preprocessing_fn, height=args.image_size, width=args.image_size, num_classes=(1001 - args.labels_offset), labels_offset=args.labels_offset) | ||
|
||
dataset = tf.data.TFRecordDataset(tf_records).repeat(1) | ||
dataset = dataset.map(parse_function, num_parallel_calls=1).apply(tf.contrib.data.batch_and_drop_remainder(args.batch_size)) | ||
iterator = dataset.make_initializable_iterator() | ||
images, labels = iterator.get_next() | ||
|
||
network_fn = nets_factory.get_network_fn(args.model_name, num_classes=(1001 - args.labels_offset), is_training=False) | ||
with tf.device('/cpu:0'): | ||
images = tf.placeholder_with_default(images, | ||
shape=(None, args.image_size, args.image_size, 3), | ||
name='input') | ||
labels = tf.placeholder_with_default(labels, | ||
shape=(None, 1001 - args.labels_offset), | ||
name='labels') | ||
logits, end_points = network_fn(images) | ||
confidences = tf.nn.softmax(logits, axis=1, name='confidences') | ||
categorical_preds = tf.argmax(confidences, axis=1, name='categorical_preds') | ||
categorical_labels = tf.argmax(labels, axis=1, name='categorical_labels') | ||
correct_predictions = tf.equal(categorical_labels, categorical_preds) | ||
top1_acc = tf.reduce_mean(tf.cast(correct_predictions, tf.float32), name='top1-acc') | ||
top5_acc = tf.reduce_mean(tf.cast(tf.nn.in_top_k(predictions=confidences, | ||
targets=tf.cast(categorical_labels, tf.int32), | ||
k=5), tf.float32), name='top5-acc') | ||
|
||
saver = tf.train.Saver() | ||
sess = tf.Session() | ||
|
||
# Load model from checkpoint | ||
if not args.ckpt_bn_folded: | ||
saver.restore(sess, args.checkpoint_path) | ||
else: | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
# Fold all BatchNorms before QuantSim | ||
sess, folded_pairs = fold_all_batch_norms(sess, ['IteratorGetNext'], [logits.name[:-2]]) | ||
|
||
if args.ckpt_bn_folded: | ||
with sess.graph.as_default(): | ||
saver = tf.train.Saver() | ||
saver.restore(sess, args.checkpoint_path) | ||
else: | ||
# Do Cross Layer Equalization and Bias Correction if not loading from a batchnorm folded checkpoint | ||
sess = equalize_model(sess, ['input'], [logits.op.name]) | ||
conv_bn_dict = BiasCorrection.find_all_convs_bn_with_activation(sess, ['input'], [logits.op.name]) | ||
quant_params = QuantParams(quant_mode=args.quant_scheme) | ||
bias_correction_dataset = tf.data.TFRecordDataset(tf_records).repeat(1) | ||
bias_correction_dataset = bias_correction_dataset.map(lambda x: parse_function(x)[0], num_parallel_calls=1).apply(tf.contrib.data.batch_and_drop_remainder(args.batch_size)) | ||
bias_correction_params = BiasCorrectionParams(batch_size=args.batch_size, | ||
num_quant_samples=10, | ||
num_bias_correct_samples=512, | ||
input_op_names=['input'], | ||
output_op_names=[logits.op.name]) | ||
|
||
|
||
sess = BiasCorrection.correct_bias(reference_model=sess, | ||
bias_correct_params=bias_correction_params, | ||
quant_params=quant_params, | ||
data_set=bias_correction_dataset, | ||
conv_bn_dict=conv_bn_dict, | ||
perform_only_empirical_bias_corr=True) | ||
|
||
|
||
# Define eval_func to use for compute encodings in QuantSim | ||
def eval_func(session, iterations): | ||
cnt = 0 | ||
avg_acc_top1 = 0 | ||
session.run('MakeIterator') | ||
while cnt < iterations or iterations == -1: | ||
try: | ||
avg_acc_top1 += session.run('top1-acc:0') | ||
cnt += 1 | ||
except: | ||
return avg_acc_top1 / cnt | ||
|
||
return avg_acc_top1 / cnt | ||
|
||
# Select the right quant_scheme | ||
if args.quant_scheme == 'range_learning_tf': | ||
quant_scheme = aimet_common.defs.QuantScheme.training_range_learning_with_tf_init | ||
elif args.quant_scheme == 'range_learning_tf_enhanced': | ||
quant_scheme = aimet_common.defs.QuantScheme.training_range_learning_with_tf_enhanced_init | ||
elif args.quant_scheme == 'tf': | ||
quant_scheme = aimet_common.defs.QuantScheme.post_training_tf | ||
elif args.quant_scheme == 'tf_enhanced': | ||
quant_scheme = aimet_common.defs.QuantScheme.post_training_tf_enhanced | ||
else: | ||
raise ValueError("Got unrecognized quant_scheme: " + args.quant_scheme) | ||
|
||
# Create QuantizationSimModel | ||
sim = QuantizationSimModel( | ||
session=sess, | ||
starting_op_names=['IteratorGetNext'], | ||
output_op_names=[logits.name[:-2]], | ||
quant_scheme=quant_scheme, | ||
rounding_mode=args.round_mode, | ||
default_output_bw=args.default_output_bw, | ||
default_param_bw=args.default_param_bw, | ||
config_file=args.quantsim_config_file, | ||
) | ||
|
||
# Run compute_encodings | ||
sim.compute_encodings(eval_func, forward_pass_callback_args=args.encodings_iterations) | ||
|
||
# Run final evaluation | ||
sess = sim.session | ||
|
||
top1_acc = eval_func(sess, -1) | ||
print('Avg accuracy Top 1: {}'.format(top1_acc)) | ||
|
||
|
||
def parse_args(args): | ||
""" Parse the arguments. | ||
""" | ||
parser = argparse.ArgumentParser(description='Evaluation script for an Resnet 50 network.') | ||
|
||
parser.add_argument('--model-name', help='Name of model to eval.', default='resnet_v1_50') | ||
parser.add_argument('--checkpoint-path', help='Path to checkpoint to load from.') | ||
parser.add_argument('--dataset-dir', help='Imagenet eval dataset directory.') | ||
parser.add_argument('--labels-offset', help='Offset for whether to ignore background label', type=int, default=0) | ||
parser.add_argument('--image-size', help='Image size.', type=int, default=224) | ||
parser.add_argument('--batch-size', help='Batch size.', type=int, default=32) | ||
|
||
parser.add_argument('--ckpt-bn-folded', help='Use this flag to specify whether checkpoint has batchnorms folded already or not.', action='store_true') | ||
parser.add_argument('--quant-scheme', help='Quant scheme to use for quantization (tf, tf_enhanced, range_learning_tf, range_learning_tf_enhanced).', default='tf') | ||
parser.add_argument('--round-mode', help='Round mode for quantization.', default='nearest') | ||
parser.add_argument('--default-output-bw', help='Default output bitwidth for quantization.', type=int, default=8) | ||
parser.add_argument('--default-param-bw', help='Default parameter bitwidth for quantization.', type=int, default=8) | ||
parser.add_argument('--quantsim-config-file', help='Quantsim configuration file.', default=None) | ||
parser.add_argument('--encodings-iterations', help='Number of iterations to use for compute encodings during quantization.', default=500) | ||
|
||
return parser.parse_args(args) | ||
|
||
def main(args=None): | ||
args = parse_args(args) | ||
run_evaluation(args) | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters