Skip to content

Commit

Permalink
add the doc for GPU and solvent models (#130)
Browse files Browse the repository at this point in the history
* Create gpu.rst

* add gpu.rst in user.rst

* add gpu.rst in user.rst

* Update gpu.rst

* Update solvent.rst

* Update solvent.rst

* Update solvent.rst

* added installation

* update solvent models
  • Loading branch information
wxj6000 authored May 8, 2024
1 parent 12c9c43 commit 3a90fcd
Show file tree
Hide file tree
Showing 3 changed files with 234 additions and 212 deletions.
2 changes: 2 additions & 0 deletions source/user.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,4 +33,6 @@ functionalities.
user/lo.rst
user/sgx.rst
user/geomopt.rst
user/gpu.rst
user/reference.rst

154 changes: 154 additions & 0 deletions source/user/gpu.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
.. _user_gpu:

GPU Acceleration (GPU4PySCF)
****************************

*Modules*: :py:mod:`gpu4pyscf`

.. module:: GPU4PySCF
:synopsis: GPU4PySCF
.. sectionauthor:: Xiaojie Wu <[email protected]>.

Introduction
============

Modern GPUs accelerate quantum chemistry calculation significantly, but also have an advantage in cost saving `[1]`_.
Some of basic PySCF modules, such as SCF and DFT, are accelerated with GPU via a plugin package
GPU4PySCF (See the end of this page for the supported functionalities). For the density fitting scheme,
GPU4PySCF on A100-80G can be 1000x faster than PySCF on single-core CPU. The speedup of direct SCF scheme is relatively low.

.. _[1]: https://arxiv.org/abs/2404.09452

Installation
============
The binary package of GPU4PySCF is released based on the CUDA version.

.. list-table::
:widths: 25 25 25 25
:header-rows: 1

* - CUDA version
- GPU4PySCF
- cuTensor
* - CUDA 11.x
- ``pip3 install gpu4pyscf-cuda11x``
- ``pip3 install cutensor-cu11``
* - CUDA 12.x
- ``pip3 install gpu4pyscf-cuda12x``
- ``pip3 install cutensor-cu12``

Usage of GPU4PySCF
==================
GPU4PySCF APIs are designed to be compatible with PySCF. When supported, high-level functions and objects are named the same as PySCF. But, GPU4PySCF classes do not directly inherit from PySCF class.
PySCF objects and GPU4PySCF objects can be converted into each other by :func:`to_gpu` and :func:`to_cpu`. In the conversion, the numpy arrays will be converted into cupy array. And the functions will be omitted if they are not supported with GPU acceleration.

One can use the two modes to accelerate the calculations: directly use GPU4PySCF object::

import pyscf
from gpu4pyscf.dft import rks

atom ='''
O 0.0000000000 -0.0000000000 0.1174000000
H -0.7570000000 -0.0000000000 -0.4696000000
H 0.7570000000 0.0000000000 -0.4696000000
'''

mol = pyscf.M(atom=atom, basis='def2-tzvpp')
mf = rks.RKS(mol, xc='LDA').density_fit()

e_dft = mf.kernel() # compute total energy
print(f"total energy = {e_dft}")

g = mf.nuc_grad_method()
g_dft = g.kernel() # compute analytical gradient

h = mf.Hessian()
h_dft = h.kernel() # compute analytical Hessian

Alternatively, one can convert PySCF object to the corresponding GPU4PySCF object with :func:`to_gpu` since PySCF 2.5.0 ::

import pyscf
from pyscf.dft import rks

atom ='''
O 0.0000000000 -0.0000000000 0.1174000000
H -0.7570000000 -0.0000000000 -0.4696000000
H 0.7570000000 0.0000000000 -0.4696000000
'''

mol = pyscf.M(atom=atom, basis='def2-tzvpp')
mf = rks.RKS(mol, xc='LDA').density_fit().to_gpu() # move PySCF object to GPU4PySCF object
e_dft = mf.kernel() # compute total energy


When the GPU task is done, the GPU4PySCF object can be converted into the corresponding PySCF object via :func:`mf.to_cpu()`.
Then, more sophisticated methods in PySCF can apply. One can also convert the individual CuPy array to numpy array with `Cupy APIs`_.

.. Cupy APIs: https://docs.cupy.dev/en/stable/user_guide/index.html
Functionalities supported by GPU4PySCF
======================================
.. list-table::
:widths: 25 25 25 25
:header-rows: 1

* - Method
- SCF
- Gradient
- Hessian
* - direct SCF
- O
- GPU
- CPU
* - density fitting
- O
- O
- O
* - LDA
- O
- O
- O
* - GGA
- O
- O
- O
* - mGGA
- O
- O
- O
* - hybrid
- O
- O
- O
* - unrestricted
- O
- O
- O
* - PCM solvent
- GPU
- GPU
- FD
* - SMD solvent
- GPU
- GPU
- FD
* - dispersion correction
- CPU*
- CPU*
- FD
* - nonlocal correlation
- O
- O
- NA
* - ECP
- CPU
- CPU
- CPU
* - MP2
- GPU
- CPU
- CPU
* - CCSD
- GPU
- CPU
- NA
Loading

0 comments on commit 3a90fcd

Please sign in to comment.