-
Notifications
You must be signed in to change notification settings - Fork 33
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added PV Fleets QA pipeline examples (#202)
* Added the temperature QA example * added temp QA dictionary * fixing pep8 errors for temp example * added readme.rst at @cwhanse's guidance * updated the irradiance routine, currently working on power * pep8 compliant formatting * refactored the power example so it runs end-to-end * added psm3 data * debug psm3/df NaNs * update documentation error with graphic * more cleanup of the examples * added cutoff line for daily completeness score * updated the whatsnew file * fixing example errors * fix completeness score graphics * Update docs/examples/pvfleets-qa-pipeline/pvfleets-power-qa.py Co-authored-by: Cliff Hansen <[email protected]> * Update docs/examples/pvfleets-qa-pipeline/README.rst Co-authored-by: Cliff Hansen <[email protected]> * Update docs/examples/pvfleets-qa-pipeline/pvfleets-irradiance-qa.py Co-authored-by: Cliff Hansen <[email protected]> * Update docs/examples/pvfleets-qa-pipeline/pvfleets-irradiance-qa.py Co-authored-by: Cliff Hansen <[email protected]> * fixed redundant data shift call in scripts * more cleanup of text * fixed erroneous data issues * cleaned up the mask sequencing * updated the mask issues, making data issue mask a single mask * significantly reduced the file sizes by taking smaller snapshots + resampling * more updates to file sizes * updated the irradiance stream size * added parquet files for gallery testing * added pyarrow as doc requirement * update the plots so the axes aren't cutoff--fix other issues with T->min * fixed pep8 issues * updated the routine to get rid of power error * more standardizing of the output graphs * Update docs/examples/pvfleets-qa-pipeline/pvfleets-irradiance-qa.py Co-authored-by: Cliff Hansen <[email protected]> * addressing doctstring comments that @kandersolar pointed out * updates to docstring --------- Co-authored-by: Cliff Hansen <[email protected]>
- Loading branch information
1 parent
201b495
commit 5e05983
Showing
10 changed files
with
1,156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
PVFleets QA Examples | ||
-------------------- | ||
|
||
These examples highlight the QA processes for temperature, power and irradiance data streams that are used in the NREL | ||
PV Fleet Performance Data Initiative (https://www.nrel.gov/pv/fleet-performance-data-initiative.html). |
384 changes: 384 additions & 0 deletions
384
docs/examples/pvfleets-qa-pipeline/pvfleets-irradiance-qa.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,384 @@ | ||
""" | ||
PV Fleets QA Process: Irradiance | ||
================================ | ||
PV Fleets Irradiance QA Pipeline | ||
""" | ||
|
||
# %% | ||
# The NREL PV Fleets Data Initiative uses PVAnalytics routines to assess the | ||
# quality of systems' PV data. In this example, the PV Fleets process for | ||
# assessing the data quality of an irradiance data stream is shown. This | ||
# example pipeline illustrates how several PVAnalytics functions can be used | ||
# in sequence to assess the quality of an irradiance data stream. | ||
|
||
import pandas as pd | ||
import pathlib | ||
from matplotlib import pyplot as plt | ||
import pvanalytics | ||
import pvlib | ||
from pvanalytics.quality import data_shifts as ds | ||
from pvanalytics.quality import gaps | ||
from pvanalytics.quality.outliers import zscore | ||
from pvanalytics.features.daytime import power_or_irradiance | ||
from pvanalytics.quality.time import shifts_ruptures | ||
from pvanalytics.features import daytime | ||
|
||
# %% | ||
# First, we import a POA irradiance data stream from a PV installation | ||
# at NREL. This data set is publicly available via the PVDAQ database in the | ||
# DOE Open Energy Data Initiative (OEDI) | ||
# (https://data.openei.org/submissions/4568), under system ID 15. | ||
# This data is timezone-localized. | ||
|
||
pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent | ||
file = pvanalytics_dir / 'data' / 'system_15_poa_irradiance.parquet' | ||
time_series = pd.read_parquet(file) | ||
time_series.set_index('measured_on', inplace=True) | ||
time_series.index = pd.to_datetime(time_series.index) | ||
time_series = time_series['poa_irradiance__484'] | ||
latitude = 39.7406 | ||
longitude = -105.1775 | ||
data_freq = '15min' | ||
time_series = time_series.asfreq(data_freq) | ||
|
||
# %% | ||
# First, let's visualize the original time series as reference. | ||
|
||
time_series.plot(title="Original Time Series") | ||
plt.xlabel("Date") | ||
plt.ylabel("Irradiance, W/m^2") | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# %% | ||
# Now, let's run basic data checks to identify stale and abnormal/outlier | ||
# data in the time series. Basic data checks include the following steps: | ||
# | ||
# 1) Flatlined/stale data periods | ||
# (:py:func:`pvanalytics.quality.gaps.stale_values_round`) | ||
# 2) Negative irradiance data | ||
# 3) "Abnormal" data periods, which are defined as days with a daily minimum | ||
# greater than 50 OR any data greater than 1300 | ||
# 4) Outliers, which are defined as more than one 4 standard deviations | ||
# away from the mean (:py:func:`pvanalytics.quality.outliers.zscore`) | ||
|
||
# REMOVE STALE DATA (that isn't during nighttime periods) | ||
# Day/night mask | ||
daytime_mask = power_or_irradiance(time_series) | ||
# Stale data mask | ||
stale_data_mask = gaps.stale_values_round(time_series, | ||
window=3, | ||
decimals=2) | ||
stale_data_mask = stale_data_mask & daytime_mask | ||
|
||
# REMOVE NEGATIVE DATA | ||
negative_mask = (time_series < 0) | ||
|
||
# FIND ABNORMAL PERIODS | ||
daily_min = time_series.resample('D').min() | ||
erroneous_mask = (daily_min > 50) | ||
erroneous_mask = erroneous_mask.reindex(index=time_series.index, | ||
method='ffill', | ||
fill_value=False) | ||
|
||
# Remove values greater than or equal to 1300 | ||
out_of_bounds_mask = (time_series >= 1300) | ||
|
||
# FIND OUTLIERS (Z-SCORE FILTER) | ||
zscore_outlier_mask = zscore(time_series, | ||
zmax=4, | ||
nan_policy='omit') | ||
|
||
# Get the percentage of data flagged for each issue, so it can later be logged | ||
pct_stale = round((len(time_series[ | ||
stale_data_mask].dropna())/len(time_series.dropna())*100), 1) | ||
pct_negative = round((len(time_series[ | ||
negative_mask].dropna())/len(time_series.dropna())*100), 1) | ||
pct_erroneous = round((len(time_series[ | ||
erroneous_mask].dropna())/len(time_series.dropna())*100), 1) | ||
pct_outlier = round((len(time_series[ | ||
zscore_outlier_mask].dropna())/len(time_series.dropna())*100), 1) | ||
|
||
# Visualize all of the time series issues (stale, abnormal, outlier, etc) | ||
time_series.plot() | ||
labels = ["Irradiance"] | ||
if any(stale_data_mask): | ||
time_series.loc[stale_data_mask].plot(ls='', marker='o', color="green") | ||
labels.append("Stale") | ||
if any(negative_mask): | ||
time_series.loc[negative_mask].plot(ls='', marker='o', color="orange") | ||
labels.append("Negative") | ||
if any(erroneous_mask): | ||
time_series.loc[erroneous_mask].plot(ls='', marker='o', color="yellow") | ||
labels.append("Abnormal") | ||
if any(out_of_bounds_mask): | ||
time_series.loc[out_of_bounds_mask].plot(ls='', marker='o', color="yellow") | ||
labels.append("Too High") | ||
if any(zscore_outlier_mask): | ||
time_series.loc[zscore_outlier_mask].plot( | ||
ls='', marker='o', color="purple") | ||
labels.append("Outlier") | ||
plt.legend(labels=labels) | ||
plt.title("Time Series Labeled for Basic Issues") | ||
plt.xlabel("Date") | ||
plt.ylabel("Irradiance, W/m^2") | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
|
||
# %% | ||
# Now, let's filter out any of the flagged data from the basic irradiance | ||
# checks (stale or abnormal data). Then we can re-visualize the data | ||
# post-filtering. | ||
|
||
# Filter the time series, taking out all of the issues | ||
issue_mask = ((~stale_data_mask) & (~negative_mask) & (~erroneous_mask) & | ||
(~out_of_bounds_mask) & (~zscore_outlier_mask)) | ||
time_series = time_series[issue_mask] | ||
time_series = time_series.asfreq(data_freq) | ||
|
||
# Visualize the time series post-filtering | ||
time_series.plot(title="Time Series Post-Basic Data Filtering") | ||
plt.xlabel("Date") | ||
plt.ylabel("Irradiance, W/m^2") | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# %% | ||
# We filter the time series based on its daily completeness score. This | ||
# filtering scheme requires at least 25% of data to be present for each day to | ||
# be included. We further require at least 10 consecutive days meeting this | ||
# 25% threshold to be included. | ||
|
||
# Visualize daily data completeness | ||
data_completeness_score = gaps.completeness_score(time_series) | ||
|
||
# Visualize data completeness score as a time series. | ||
data_completeness_score.plot() | ||
plt.xlabel("Date") | ||
plt.ylabel("Daily Completeness Score (Fractional)") | ||
plt.axhline(y=0.25, color='r', linestyle='-', | ||
label='Daily Completeness Cutoff') | ||
plt.legend() | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# Trim the series based on daily completeness score | ||
trim_series = pvanalytics.quality.gaps.trim_incomplete( | ||
time_series, | ||
minimum_completeness=.25, | ||
freq=data_freq) | ||
first_valid_date, last_valid_date = \ | ||
pvanalytics.quality.gaps.start_stop_dates(trim_series) | ||
time_series = time_series[first_valid_date.tz_convert(time_series.index.tz): | ||
last_valid_date.tz_convert(time_series.index.tz)] | ||
time_series = time_series.asfreq(data_freq) | ||
|
||
# %% | ||
# Next, we check the time series for any time shifts, which may be caused by | ||
# time drift or by incorrect time zone assignment. To do this, we compare | ||
# the modelled midday time for the particular system location to its | ||
# measured midday time. We use | ||
# :py:func:`pvanalytics.quality.gaps.stale_values_round`) to determine the | ||
# presence of time shifts in the series. | ||
|
||
# Get the modeled sunrise and sunset time series based on the system's | ||
# latitude-longitude coordinates | ||
modeled_sunrise_sunset_df = pvlib.solarposition.sun_rise_set_transit_spa( | ||
time_series.index, latitude, longitude) | ||
|
||
# Calculate the midday point between sunrise and sunset for each day | ||
# in the modeled irradiance series | ||
modeled_midday_series = modeled_sunrise_sunset_df['sunrise'] + \ | ||
(modeled_sunrise_sunset_df['sunset'] - | ||
modeled_sunrise_sunset_df['sunrise']) / 2 | ||
|
||
# Run day-night mask on the irradiance time series | ||
daytime_mask = power_or_irradiance(time_series, | ||
freq=data_freq, | ||
low_value_threshold=.005) | ||
|
||
# Generate the sunrise, sunset, and halfway points for the data stream | ||
sunrise_series = daytime.get_sunrise(daytime_mask) | ||
sunset_series = daytime.get_sunset(daytime_mask) | ||
midday_series = sunrise_series + ((sunset_series - sunrise_series)/2) | ||
|
||
# Convert the midday and modeled midday series to daily values | ||
midday_series_daily, modeled_midday_series_daily = ( | ||
midday_series.resample('D').mean(), | ||
modeled_midday_series.resample('D').mean()) | ||
|
||
# Set midday value series as minutes since midnight, from midday datetime | ||
# values | ||
midday_series_daily = (midday_series_daily.dt.hour * 60 + | ||
midday_series_daily.dt.minute + | ||
midday_series_daily.dt.second / 60) | ||
modeled_midday_series_daily = \ | ||
(modeled_midday_series_daily.dt.hour * 60 + | ||
modeled_midday_series_daily.dt.minute + | ||
modeled_midday_series_daily.dt.second / 60) | ||
|
||
# Estimate the time shifts by comparing the modelled midday point to the | ||
# measured midday point. | ||
is_shifted, time_shift_series = shifts_ruptures(modeled_midday_series_daily, | ||
midday_series_daily, | ||
period_min=15, | ||
shift_min=15, | ||
zscore_cutoff=1.5) | ||
|
||
# Create a midday difference series between modeled and measured midday, to | ||
# visualize time shifts. First, resample each time series to daily frequency, | ||
# and compare the data stream's daily halfway point to the modeled halfway | ||
# point | ||
midday_diff_series = (modeled_midday_series.resample('D').mean() - | ||
midday_series.resample('D').mean() | ||
).dt.total_seconds() / 60 | ||
|
||
# Generate boolean for detected time shifts | ||
if any(time_shift_series != 0): | ||
time_shifts_detected = True | ||
else: | ||
time_shifts_detected = False | ||
|
||
# Build a list of time shifts for re-indexing. We choose to use dicts. | ||
time_shift_series.index = pd.to_datetime( | ||
time_shift_series.index) | ||
changepoints = (time_shift_series != time_shift_series.shift(1)) | ||
changepoints = changepoints[changepoints].index | ||
changepoint_amts = pd.Series(time_shift_series.loc[changepoints]) | ||
time_shift_list = list() | ||
for idx in range(len(changepoint_amts)): | ||
if idx < (len(changepoint_amts) - 1): | ||
time_shift_list.append({"datetime_start": | ||
str(changepoint_amts.index[idx]), | ||
"datetime_end": | ||
str(changepoint_amts.index[idx + 1]), | ||
"time_shift": changepoint_amts[idx]}) | ||
else: | ||
time_shift_list.append({"datetime_start": | ||
str(changepoint_amts.index[idx]), | ||
"datetime_end": | ||
str(time_shift_series.index.max()), | ||
"time_shift": changepoint_amts[idx]}) | ||
|
||
# Correct any time shifts in the time series | ||
new_index = pd.Series(time_series.index, index=time_series.index) | ||
for i in time_shift_list: | ||
new_index[(time_series.index >= pd.to_datetime(i['datetime_start'])) & | ||
(time_series.index < pd.to_datetime(i['datetime_end']))] = \ | ||
time_series.index + pd.Timedelta(minutes=i['time_shift']) | ||
time_series.index = new_index | ||
|
||
# Remove duplicated indices and sort the time series (just in case) | ||
time_series = time_series[~time_series.index.duplicated( | ||
keep='first')].sort_index() | ||
|
||
# Plot the difference between measured and modeled midday, as well as the | ||
# CPD-estimated time shift series. | ||
midday_diff_series.plot() | ||
time_shift_series.plot() | ||
plt.title("Midday Difference Time Shift Series") | ||
plt.xlabel("Date") | ||
plt.ylabel("Midday Difference (Modeled-Measured), Minutes") | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# Plot the heatmap of the irradiance time series | ||
plt.figure() | ||
# Get time of day from the associated datetime column | ||
time_of_day = pd.Series(time_series.index.hour + | ||
time_series.index.minute/60, | ||
index=time_series.index) | ||
# Pivot the dataframe | ||
dataframe = pd.DataFrame(pd.concat([time_series, time_of_day], axis=1)) | ||
dataframe.columns = ["values", 'time_of_day'] | ||
dataframe = dataframe.dropna() | ||
dataframe_pivoted = dataframe.pivot_table(index='time_of_day', | ||
columns=dataframe.index.date, | ||
values="values") | ||
plt.pcolormesh(dataframe_pivoted.columns, | ||
dataframe_pivoted.index, | ||
dataframe_pivoted, | ||
shading='auto') | ||
plt.ylabel('Time of day [0-24]') | ||
plt.xlabel('Date') | ||
plt.xticks(rotation=60) | ||
plt.title('Post-Correction Heatmap, Time of Day') | ||
plt.colorbar() | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# %% | ||
# Next, we check the time series for any abrupt data shifts. We take the | ||
# longest continuous part of the time series that is free of data shifts. | ||
# We use :py:func:`pvanalytics.quality.data_shifts.detect_data_shifts` to | ||
# detect data shifts in the time series. | ||
|
||
# Resample the time series to daily mean | ||
time_series_daily = time_series.resample('D').mean() | ||
data_shift_start_date, data_shift_end_date = \ | ||
ds.get_longest_shift_segment_dates(time_series_daily) | ||
data_shift_period_length = (data_shift_end_date - data_shift_start_date).days | ||
|
||
# Get the number of shift dates | ||
data_shift_mask = ds.detect_data_shifts(time_series_daily) | ||
# Get the shift dates | ||
shift_dates = list(time_series_daily[data_shift_mask].index) | ||
if len(shift_dates) > 0: | ||
shift_found = True | ||
else: | ||
shift_found = False | ||
|
||
# Visualize the time shifts for the daily time series | ||
print("Shift Found:", shift_found) | ||
edges = [time_series_daily.index[0]] + \ | ||
shift_dates + [time_series_daily.index[-1]] | ||
fig, ax = plt.subplots() | ||
for (st, ed) in zip(edges[:-1], edges[1:]): | ||
ax.plot(time_series_daily.loc[st:ed]) | ||
plt.title("Daily Time Series Labeled for Data Shifts") | ||
plt.xlabel("Date") | ||
plt.ylabel("Mean Daily Irradiance (W/m^2)") | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# %% | ||
# We filter the time series to only include the longest | ||
# shift-free period. | ||
|
||
# Filter the time series to only include the longest shift-free period | ||
time_series = time_series[ | ||
(time_series.index >= data_shift_start_date.tz_convert( | ||
time_series.index.tz)) & | ||
(time_series.index <= data_shift_end_date.tz_convert( | ||
time_series.index.tz))] | ||
|
||
time_series = time_series.asfreq(data_freq) | ||
|
||
|
||
# %% | ||
# Display the final irradiance time series, post-QA filtering. | ||
time_series.plot(title="Final Filtered Time Series") | ||
plt.xlabel("Date") | ||
plt.ylabel("Irradiance (W/m^2)") | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# %% | ||
# Generate a dictionary output for the QA assessment of this data stream, | ||
# including the percent stale and erroneous data detected, any shift dates, | ||
# and any detected time shifts. | ||
|
||
qa_check_dict = {"original_time_zone_offset": time_series.index.tz, | ||
"pct_stale": pct_stale, | ||
"pct_negative": pct_negative, | ||
"pct_erroneous": pct_erroneous, | ||
"pct_outlier": pct_outlier, | ||
"time_shifts_detected": time_shifts_detected, | ||
"time_shift_list": time_shift_list, | ||
"data_shifts": shift_found, | ||
"shift_dates": shift_dates} | ||
|
||
print("QA Results:") | ||
print(qa_check_dict) |
Oops, something went wrong.