Skip to content

Commit

Permalink
Update readme and travis
Browse files Browse the repository at this point in the history
  • Loading branch information
xiaohk committed Apr 30, 2020
1 parent e1700ea commit 0a6e09e
Show file tree
Hide file tree
Showing 4 changed files with 21 additions and 47 deletions.
11 changes: 6 additions & 5 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
language: node_js
node_js:
- lts/*
install:
- npm install
script:
- bash ./src/utils/deploy-to-gh-pages.sh
env:
global:
- GITHUB_REPO: poloclub/cnn-explainer
- secure: nDnEFwapltLIw7l+i1EY9FZ92te3vAWdgI5fNUoaozjamggmI7g6zmsHkla/FdMyCK0CA/8GAyzULa7Mt4cHCHTZD0/uCPlWvpICRyLqWkeKpo901yMbu+6IMoG91vEa8GnZ2kBeqTlUq2qHc6aG5p3xm/QlFxFr2+ryjCjnuV8Hbw6ZGDorI2/4yejbFQQV7SSK7ILa0kfXAqAxzoZWwv69h1K8Za+c0PhZdTZx4C132Yntrf2Ou9cjMwkGVmT/24Hv8tKpWyWiz1mgcpwj0unqVNeZVsE65/4sDJB3OGx7vM66f75zkIReQoB7AyoxMzxgcBPJ+LhiNwTuuy66Tpaoptn1WRXxcWhptMiX+FFPJEGJKhGHDXlIhsVPdQ0VUUDgpyS0RqAFhkslOs+SKIHVMN1X21/w+qcxO5mrRkqWLIz/K+GUjFlZ3pUHnxcr5a82nyBLVCXJcT334+VdJhSZHnewecbcYAw5Krz2LGCDTQJRuBqfurNcyff2hCY+ujFXx5+POYTuAYIVWetq+z3lvDnSY2v27XUB/ataQJ6DvGPJzpmRpGIwY2v1nBnnBEssgy6eFBV8TeuwFF95HVZuyo8K3YEVbBtFnH/36/q6aALL0cZRNTbcUasm8DljWkaIqL6Dj60jemFENQkw02vcTeanR3luC/RnKetE1m4=
- npm run build
45 changes: 9 additions & 36 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
# CNN Explainer

CNN Explainer is an interactive visualization system designed for non-experts
to more easily learn about convolutional neural networks (CNNs).
An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs)

[![Build Status](https://travis-ci.com/poloclub/cnn-explainer.svg?branch=master)](https://travis-ci.com/poloclub/cnn-explainer)

<a href="https://youtu.be/udVN7fPvGe0" target="_blank"><img src="https://i.imgur.com/TIKlgt6.png" style="max-width:100%;"></a>

## Live Demo

For a live demo, visit: http://poloclub.github.io/cnn-explainer/.
For a live demo, visit: http://poloclub.github.io/cnn-explainer/

## Running Locally

Expand All @@ -32,7 +33,7 @@ Than run CNN Explainer:
npm run dev
```

Navigate to [localhost:5000](localhost:5000). You should CNN Explainer running in your broswer :)
Navigate to [localhost:5000](https://localhost:5000). You should CNN Explainer running in your broswer :)

To see how we trained the CNN, visit the directory [`./tiny-vgg/`](tiny-vgg).

Expand All @@ -56,41 +57,13 @@ We thank
[Kantwon Rogers](https://www.kantwon.com), and the
[Georgia Tech Visualization Lab](http://vis.gatech.edu)
for their support and constructive feedback.

## License

For more information, check out our [research manuscript](https://arxiv.org/abs/2001.02004):

[Z. J. Wang](https://zijie.wang/),
[R. Turko](https://www.linkedin.com/in/robert-turko/),
[O. Shaikh](http://oshaikh.com/),
[H. Park](https://haekyu.com/),
[N. Das](http://nilakshdas.com/),
[F. Hohman](https://fredhohman.com/),
[M. Kahng](http://minsuk.com),
and [D. H. Chau](https://www.cc.gatech.edu/~dchau/).
CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization.
<i>arXiv:2001.02004 [cs],</i>
Apr. 2020.


## Citation
```
@article{wangCNNExplainerLearning2020,
title = {{{CNN Explainer}}: {{Learning Convolutional Neural Networks}} with {{Interactive Visualization}}},
shorttitle = {{{CNN Explainer}}},
author = {Wang, Zijie J. and Turko, Robert and Shaikh, Omar and Park, Haekyu and Das, Nilaksh and Hohman, Fred and Kahng, Minsuk and Chau, Duen Horng},
year = {2020},
month = apr,
archivePrefix = {arXiv},
eprint = {2001.02004},
eprinttype = {arxiv},
journal = {arXiv:2001.02004 [cs]},
keywords = {Computer Science - Artificial Intelligence,Computer Science - Human-Computer Interaction,Computer Science - Machine Learning},
primaryClass = {cs}
}
```
The software is available under the [MIT License](https://github.com/poloclub/cnn-explainer/blob/master/LICENSE).

## Contact

If you have any questions, feel free to [open an issue](https://github.com/poloclub/cnn-explainer/issues/new/choose) or contact [Jay Wang](www.zijie.wang).
If you have any questions, feel free to [open an issue](https://github.com/poloclub/cnn-explainer/issues/new/choose) or contact [Jay Wang](https://www.zijie.wang).


Binary file modified public/assets/figures/softmax_animation.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
12 changes: 6 additions & 6 deletions tiny-vgg/README.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
# Train a Tiny VGG

This directory includes code and data to train a Tiny VGG model
(inspired by the demo CNN in [Stanford CS231n class](http://cs231n.stanford.edu)
on 10 every-day classes from [Tiny ImageNet](https://tiny-imagenet.herokuapp.com).
(inspired by the demo CNN in [Stanford CS231n class](http://cs231n.stanford.edu))
on 10 every-day classes from the [Tiny ImageNet](https://tiny-imagenet.herokuapp.com).

## Installation

Expand Down Expand Up @@ -69,17 +69,17 @@ python tiny-vgg.py
After training, you will get two trained models in Keras format `trained_tiny_vgg.h5`
and `trained_vgg_best.h5`. The first file is the final model after training, and
`trained_vgg_best.h5` is the model having the best validation performance.
You can use either one to power CNN Explainer.
You can use either one for CNN Explainer.

## Convert Model Format

Before loading the model using tensorflow.js, you want to convert the model format
Before loading the model using *tensorflow.js*, you want to convert the model format
from Keras `h5` format to [tensorflow.js format](https://www.tensorflow.org/js/tutorials/conversion/import_keras).

```
ensorflowjs_converter --input_format keras trained_vgg_best.h5 ./
```

Then you can put the output file `group1-shard1of1.bin` in `/public/data` and uses
tensorflow.js to run the trained model.
Then you can put the output file `group1-shard1of1.bin` in `/public/data` and use
*tensorflow.js* to load the trained model.

0 comments on commit 0a6e09e

Please sign in to comment.