Skip to content

Latest commit

 

History

History
31 lines (21 loc) · 1.8 KB

README.md

File metadata and controls

31 lines (21 loc) · 1.8 KB

clembench: A Framework for the Systematic Evaluation of Chat-Optimized Language Models as Conversational Agents

The cLLM (chat-optimized Large Language Model, "clem") framework tests such models' ability to engage in games – rule-constituted activities played using language. The framework is a systematic way of probing for the situated language understanding of language using agents.

This repository contains the code for setting up the framework and implements a number of games that are further discussed in

Chalamalasetti, K., Götze, J., Hakimov, S., Madureira, B., Sadler, P., & Schlangen, D. (2023). clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents (arXiv:2305.13455). arXiv. https://doi.org/10.48550/arXiv.2305.13455

Evaluation Results

On the main project website , under leaderboard.

Game details

Using the benchmark

We welcome you to contribute to or extend the benchmark with your own games and models. Please simply open a pull request. You can find more information on how to use the benchmark in the links below.