-
Notifications
You must be signed in to change notification settings - Fork 116
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
511e5b2
commit ae28551
Showing
1 changed file
with
238 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
|
||
rm(list=ls(all=TRUE)) | ||
|
||
currency <- 1 | ||
windowsize <- 6 | ||
forecaststeps <- 1 | ||
|
||
|
||
library(odbc) | ||
library(ggplot2) | ||
require(lubridate) | ||
library(digest) | ||
library(lightgbm) | ||
#library(plotly) | ||
|
||
con <- DBI::dbConnect(odbc::odbc(), | ||
Driver = "SQL Server", | ||
Server = "localhost\\SQLEXPRESS", | ||
Database = "CurrencyStrength2", | ||
Trusted_Connection = "True") | ||
|
||
DBI::dbListTables(con, table_name = "Strength%") | ||
|
||
DBI::dbListFields(con, "Strength") | ||
|
||
data <- DBI::dbReadTable(con, "Strength") | ||
#View(data) | ||
|
||
#data2 <- with(data,data[hour(Zeit)==0&minute(Zeit)==0,]) | ||
#data2 <- with(data,data[month(Zeit)==8,]) | ||
#data2 <- with(data,data[month(Zeit)==8&day(Zeit)==1&hour(Zeit)==3,]) | ||
#data2 <- with(data,data[month(Zeit)==8&day(Zeit)<=3&hour(Zeit)<24,]) | ||
#data2 <- data | ||
data2 <- with(data,data[minute(Zeit)==59,]) | ||
#rownames(data2) <- NULL | ||
|
||
varbase <- 1000 | ||
rcount <- nrow(data2) | ||
ccount <- (windowsize*8)+1 | ||
data3 <- data.frame(matrix(0, ncol=ccount, nrow=rcount)) | ||
|
||
cnames <- c("Hour") | ||
rindex <- 2 | ||
for(z in (1:8)) | ||
{ | ||
for(zz in (1:windowsize)) | ||
{ | ||
cnames[rindex] <- paste0("I",(z*varbase)+zz) | ||
rindex <- rindex+1 | ||
} | ||
} | ||
colnames(data3) <- cnames | ||
data3[,1] <- -1 | ||
|
||
lastrowhash <- "" | ||
dest <- 1 | ||
lastrows <- data.frame(matrix(0, ncol=8, nrow=windowsize+1)) | ||
targets <- data.frame(matrix(0, ncol=8, nrow=1)) | ||
for(z in (1:rcount)) | ||
{ | ||
dest <- z | ||
rowhash <- digest(data2[z,3:10,drop=TRUE]) | ||
if(rowhash!=lastrowhash) | ||
{ | ||
for(a in (1:8)) | ||
{ | ||
for(b in (windowsize:1)) | ||
{ | ||
lastrows[b+1,a] <- lastrows[b,a] | ||
} | ||
lastrows[1,a] <- data2[z,a+2] | ||
targetindex <- (z+(forecaststeps-1)) | ||
if(targetindex>rcount) | ||
targetindex <- rcount | ||
targets[1,a] <- data2[targetindex,a+2] | ||
} | ||
if(z>=windowsize) | ||
{ | ||
data3[dest,1] <- hour(data2[z,2]) | ||
|
||
for(zz in (1:8)) | ||
{ | ||
for(c in 1:windowsize) | ||
{ | ||
data3[dest,(zz*windowsize)-(c-2)] <- lastrows[c,zz]-lastrows[(windowsize+1),zz] | ||
#data3[dest,(zz*windowsize)-(c-2)] <- lastrows[c,zz] | ||
} | ||
targetdiff <- targets[1,zz]-lastrows[2,zz] | ||
if(targetdiff>=100|targetdiff<=-100) | ||
{ | ||
if(targetdiff>=100) | ||
targetdiff <- 1 | ||
else | ||
targetdiff <- -1 | ||
|
||
} | ||
else | ||
targetdiff <- 0 | ||
|
||
data3[dest,(zz*windowsize)-(1-2)] <- targetdiff | ||
|
||
|
||
# if(data3[dest,(zz*windowsize)-(1-2)]-data3[dest,(zz*windowsize)-(2-2)]>=0) | ||
# data3[dest,(zz*windowsize)-(1-2)] <- 1 | ||
# else | ||
# data3[dest,(zz*windowsize)-(1-2)] <- (-1) | ||
|
||
#data3[dest,(zz*windowsize)+1] <- lastrows[1,zz]-lastrows[(windowsize+1),zz] | ||
#data3[dest,(zz*windowsize)] <- lastrows[2,zz]-lastrows[(windowsize+1),zz] | ||
#data3[dest,(zz*windowsize)-1] <- lastrows[3,zz]-lastrows[(windowsize+1),zz] | ||
#data3[dest,(zz*windowsize)-2] <- lastrows[4,zz]-lastrows[(windowsize+1),zz] | ||
#data3[dest,(zz*windowsize)-3] <- lastrows[5,zz]-lastrows[(windowsize+1),zz] | ||
#data3[dest,(zz*windowsize)-4] <- lastrows[6,zz]-lastrows[(windowsize+1),zz] | ||
} | ||
|
||
#dest <- dest+1 | ||
} | ||
} | ||
lastrowhash <<- rowhash | ||
} | ||
data4 <- with(data3,data3[Hour>-1,]) | ||
rownames(data4) <- c() | ||
#data4[,13] <- data4[,13]+1000 | ||
|
||
#library(corrplot) | ||
#corrplot(cor(data4), method = "square") | ||
|
||
train_split <- as.integer(floor(nrow(data4)*0.75)) | ||
|
||
remrows <- c(0) | ||
remindex <- 1 | ||
for(z in (1:8)) | ||
{ | ||
if(z!=currency) | ||
{ | ||
remrows[remindex] <- (windowsize*z)+1 | ||
remindex <- remindex+1 | ||
} | ||
} | ||
data4 <- data4[,-remrows] | ||
|
||
traindata <- data4[(1:train_split),] | ||
testdata <- data4[-(1:train_split),] | ||
|
||
labelindex <- (((windowsize-1)*currency)+2) | ||
|
||
traindata2 <- as.matrix(traindata[,-c((labelindex))]) | ||
#traindata2 <- as.matrix(traindata[,1:6]) | ||
testdata2 <- as.matrix(testdata[,-c((labelindex))]) | ||
#testdata2 <- as.matrix(testdata[,1:6]) | ||
|
||
dtrain <- lgb.Dataset(data=traindata2,label=traindata[[labelindex]]) | ||
dtest <- lgb.Dataset.create.valid(dtrain,data=testdata2,label=testdata[[labelindex]]) | ||
|
||
valids <- list(train=dtrain,test=dtest) | ||
|
||
# params <- list( | ||
# boosting_type = "gbdt", | ||
# objective = "regression", | ||
# metric = c("l2","l1"), | ||
# num_leaves = 31, | ||
# learning_rate = 0.05, | ||
# feature_fraction = 0.9, | ||
# bagging_fraction = 0.8, | ||
# bagging_freq = 5, | ||
# verbose = 0) | ||
# model <- lgb.train(params, | ||
# dtrain, | ||
# 20, | ||
# valids, | ||
# early_stopping_rounds = 5) | ||
|
||
params <- list(objective = "regression", categorical_feature = c(0), ignore_column = c()) | ||
model <- lgb.train(params=params,data=dtrain,valids=valids) | ||
|
||
|
||
y_pred <- predict(model,testdata2) | ||
##y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) | ||
|
||
label = getinfo(dtest,"label") | ||
|
||
|
||
diffresult <- c(0) | ||
diffresult2 <- c(0) | ||
hours <- c(1:24) | ||
hours[1:24] <- 0 | ||
for(x in (1:nrow(testdata))) | ||
{ | ||
diff1 <- testdata[x,labelindex]-testdata[x,labelindex-1] | ||
diff2 <- y_pred[x]-testdata[x,labelindex-1] | ||
diffresult[x] <- 0 | ||
#if((diff1>=0&&diff2>=0)|(diff1<0&&diff2<0)) | ||
if((y_pred[x]>=0.01&label[x]==1)|(y_pred[x]<=-0.01&label[x]==-1)) | ||
{ | ||
diffresult[x] <- 1 | ||
hours[testdata[x,1]+1] <- hours[testdata[x,1]+1]+1 | ||
} | ||
else | ||
{ | ||
if((y_pred[x]>=0.01&label[x]==-1)|(y_pred[x]<=-0.01&label[x]==1)) | ||
hours[testdata[x,1]+1] <- hours[testdata[x,1]+1]-1 | ||
} | ||
diffresult2[x] <- 0 | ||
if(y_pred[x]>=0.4|y_pred[x]<=-0.4) | ||
{ | ||
if(label[x]==1&y_pred[x]>0) | ||
diffresult2[x] <- 1 | ||
if(label[x]==-1&y_pred[x]<0) | ||
diffresult2[x] <- 1 | ||
} | ||
else | ||
diffresult2[x] <- -1 | ||
} | ||
a <- table(diffresult) | ||
a[names(a)==1] | ||
|
||
a <- table(diffresult2) | ||
a[names(a)==1] | ||
|
||
|
||
|
||
linesize <- 0.8 | ||
alpha <- 1 | ||
|
||
|
||
hoursframe <- data.frame(hours) | ||
p3 <- ggplot(hoursframe, aes(x=as.numeric(row.names(hoursframe))-1,y=hours)) + | ||
scale_x_continuous(breaks = seq(0, 23, 1), minor_breaks = seq(0, 23, 1)) + | ||
labs(title="Forex Currency Strength", subtitle=paste("Aug 2018 - Jan 2019 | SQL Database with 2.2 Mio M1 Values | USD green | EUR blue | GBP pink | JPY brown | CHF black | CAD violet | AUD orange | NZD gray |", date()), caption=NULL, x = "Time", y = "Range 1/1000 %") + | ||
#geom_line(aes(y=y_pred),colour='mediumseagreen',size=linesize,alpha=alpha) + | ||
#geom_line(aes(y=label),colour='dodgerblue',size=linesize,alpha=alpha) + | ||
geom_line(aes(y=hoursframe$hours),colour='dodgerblue',size=linesize,alpha=alpha) + | ||
theme(plot.subtitle=element_text(size=rel(0.8))) | ||
|
||
print(p3) | ||
|
||
|
||
|