Skip to content

A Python-based command-line application for detecting pollen grains from image stacks.

License

Notifications You must be signed in to change notification settings

paleopollen/pollen-detection-cli

 
 

Repository files navigation

A Command Line Interface for Pollen Detection on Z-Stack Images

DOI Docker

We present, Pollen Detector a Command Line Interface (CLI) for pollen detection on Z-stack images. It is developed based on Deep learning and Pollen Detection in the Open World notebooks authored by Jennifer T. Feng, Shu Kong, Timme H. Donders, and Surangi W. Punyasena.

Docker Installation Instructions (Recommended)

Build Docker Image

docker build -t pollen-detection .

Run Command Line Interface

Example serial mode command

docker run -it --rm -v $(pwd)/data:/data --name pollen-detection-container pollen-detection -m /data/models/model_1.h5 -c /data/crops -d /data/detections

Example parallel mode command

docker run -it --shm-size=<memory_size_allocated> --rm -v $(pwd)/data:/data --name pollen-detection-container pollen-detection -m /data/models/model_1.h5 -c /data/crops -d /data/detections -p -n 4 -b 4

Important: Here, we use the --shm-size=<memory_size_allocated> option to increase the shared memory size for the Docker Engine. The default value is 64MB, which may be too little for parallel processing. Set this value according to the memory available on the host machine container.

Help command:

docker run -it --rm pollen-detection --help

Local Installation Instructions (Alternative)

Recommended Python version: 3.9

Setup Virtual Environment

python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Run Command Line Interface

Example serial mode command

cd src
python pollen_detection_cli.py -m <model file full path> -c <tile crops directory full path> -d <output detections directory full path prefix>

Example parallel mode command

cd src
python pollen_detection_cli.py -m <model file full path> -c <tile crops directory full path> -d <output detections directory full path prefix> -p -n 4 -b 4

Usage

usage: python pollen_detection_cli.py [-h] --model-path [MODEL_FILE_PATH] --crops-dir [CROPS_DIR_PATH] 
                               [--detections-dir-prefix [DETECTIONS_DIR_PATH_PREFIX]] [--parallel] 
                               [--num-processes [NUM_PROCESSES]] [--num-workers [NUM_WORKERS]]
                               [--batch-size [BATCH_SIZE]] [--shuffle] [--cpu] [--verbose]

Process PNG image stacks and detect pollen grains.

optional arguments:
  -h, --help            show this help message and exit
  --model-path [MODEL_FILE_PATH], -m [MODEL_FILE_PATH]
                        Full path of the trained model.
  --crops-dir [CROPS_DIR_PATH], -c [CROPS_DIR_PATH]
                        Full path of the directory containing the cropped image files.
  --detections-dir-prefix [DETECTIONS_DIR_PATH_PREFIX], -d [DETECTIONS_DIR_PATH_PREFIX]
                        Full path prefix of the directory to store the detection results.
  --parallel, -p        Run the detection in parallel.
  --num-processes [NUM_PROCESSES], -n [NUM_PROCESSES]
                        Number of processes to use for parallel processing.
  --num-workers [NUM_WORKERS], -w [NUM_WORKERS]
                        Number of data loading workers to use for parallel processing.
  --batch-size [BATCH_SIZE], -b [BATCH_SIZE]
                        Batch size for parallel processing.
  --shuffle, -s         Shuffle the dataset.
  --cpu                 Run the detection on CPU only.
  --verbose, -v         Display more details.

About

A Python-based command-line application for detecting pollen grains from image stacks.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.7%
  • Dockerfile 1.3%