-
Notifications
You must be signed in to change notification settings - Fork 38
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #79 from mist714/add-woa
Add Whale Optimization Algorithm to samplers
- Loading branch information
Showing
5 changed files
with
210 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2024 @mist714 | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
--- | ||
author: "mist714" | ||
title: "Sampler using Whale Optimization Algorithm" | ||
description: "Swarm Algorithm Inspired by Pod of Whale" | ||
tags: ["sampler"] | ||
optuna_versions: ["3.6.1"] | ||
license: "MIT License" | ||
--- | ||
|
||
## Class or Function Names | ||
- WhaleOptimizationSampler | ||
|
||
## Example | ||
```python | ||
from __future__ import annotations | ||
|
||
import matplotlib.pyplot as plt | ||
import optuna | ||
import optunahub | ||
|
||
from package.samplers.whale_optimization.whale_optimization import WhaleOptimizationSampler | ||
|
||
|
||
WhaleOptimizationSampler = optunahub.load_module( | ||
"samplers/whale_optimization" | ||
).WhaleOptimizationSampler | ||
|
||
if __name__ == "__main__": | ||
|
||
def objective(trial: optuna.trial.Trial) -> float: | ||
x = trial.suggest_float("x", -10, 10) | ||
y = trial.suggest_float("y", -10, 10) | ||
return x**2 + y**2 | ||
|
||
sampler = WhaleOptimizationSampler( | ||
{ | ||
"x": optuna.distributions.FloatDistribution(-10, 10), | ||
"y": optuna.distributions.FloatDistribution(-10, 10), | ||
} | ||
) | ||
study = optuna.create_study(sampler=sampler) | ||
study.optimize(objective, n_trials=100) | ||
optuna.visualization.matplotlib.plot_optimization_history(study) | ||
plt.show() | ||
``` | ||
|
||
## Others | ||
### Reference | ||
Mirjalili, Seyedali & Lewis, Andrew. (2016). The Whale Optimization Algorithm. Advances in Engineering Software. 95. 51-67. 10.1016/j.advengsoft.2016.01.008. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
from .whale_optimization import WhaleOptimizationSampler | ||
|
||
|
||
__all__ = ["WhaleOptimizationSampler"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
from __future__ import annotations | ||
|
||
import matplotlib.pyplot as plt | ||
import optuna | ||
import optunahub | ||
|
||
|
||
WhaleOptimizationSampler = optunahub.load_module( # type: ignore | ||
"samplers/whale_optimization" | ||
).WhaleOptimizationSampler | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
def objective(trial: optuna.trial.Trial) -> float: | ||
x = trial.suggest_float("x", -10, 10) | ||
y = trial.suggest_float("y", -10, 10) | ||
return x**2 + y**2 | ||
|
||
sampler = WhaleOptimizationSampler( | ||
{ | ||
"x": optuna.distributions.FloatDistribution(-10, 10), | ||
"y": optuna.distributions.FloatDistribution(-10, 10), | ||
} | ||
) | ||
study = optuna.create_study(sampler=sampler) | ||
study.optimize(objective, n_trials=100) | ||
optuna.visualization.matplotlib.plot_optimization_history(study) | ||
plt.show() |
107 changes: 107 additions & 0 deletions
107
package/samplers/whale_optimization/whale_optimization.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
from __future__ import annotations | ||
|
||
from typing import Any | ||
|
||
import numpy as np | ||
import optuna | ||
import optunahub | ||
|
||
|
||
SimpleSampler = optunahub.load_module("samplers/simple").SimpleSampler | ||
|
||
|
||
class WhaleOptimizationSampler(SimpleSampler): # type: ignore | ||
def __init__( | ||
self, | ||
search_space: dict[str, optuna.distributions.BaseDistribution], | ||
population_size: int = 10, | ||
max_iter: int = 40, | ||
) -> None: | ||
super().__init__(search_space) | ||
self._rng = np.random.RandomState() | ||
self.population_size = population_size | ||
self.max_iter = max_iter | ||
assert all( | ||
isinstance(dist, optuna.distributions.FloatDistribution) | ||
for dist in search_space.values() | ||
) | ||
self.lower_bound = np.asarray([dist.low for dist in search_space.values()]) | ||
self.upper_bound = np.asarray([dist.high for dist in search_space.values()]) | ||
self.dim = len(search_space) | ||
self.leader_pos = ( | ||
np.random.rand(self.dim) * (self.upper_bound - self.lower_bound) + self.lower_bound | ||
) | ||
self.leader_score = np.inf | ||
self.positions = ( | ||
np.random.rand(self.population_size, self.dim) * (self.upper_bound - self.lower_bound) | ||
+ self.lower_bound | ||
) | ||
self.queue: list[dict[str, Any]] = [] | ||
|
||
def sample_relative( | ||
self, | ||
study: optuna.study.Study, | ||
trial: optuna.trial.FrozenTrial, | ||
search_space: dict[str, optuna.distributions.BaseDistribution], | ||
) -> dict[str, Any]: | ||
if len(search_space) == 0: | ||
return {} | ||
if len(self.queue) != 0: | ||
return self.queue.pop(0) | ||
last_trials = study.get_trials(states=(optuna.trial.TrialState.COMPLETE,))[ | ||
-self.population_size : | ||
] | ||
current_iter = len(study.get_trials(states=(optuna.trial.TrialState.COMPLETE,))) | ||
new_positions = np.asarray([list(e.params.values()) for e in last_trials]) | ||
fitnesses = np.asarray([e.value for e in last_trials]) | ||
if current_iter > self.population_size: | ||
self.tell(new_positions, fitnesses) | ||
a = 2 - current_iter * (2 / self.max_iter) | ||
a2 = -1 + current_iter * (-1 / self.max_iter) | ||
new_positions = np.zeros_like(self.positions) | ||
|
||
for i in range(self.positions.shape[0]): | ||
r1, r2 = np.random.rand(), np.random.rand() | ||
A = 2 * a * r1 - a | ||
C = 2 * r2 | ||
b, L = 1, ((a2 - 1) * np.random.rand() + 1) | ||
p = np.random.rand() | ||
|
||
if p < 0.5: | ||
if np.abs(A) >= 1: | ||
rand_leader_index = np.random.randint(self.population_size) | ||
X_rand = self.positions[rand_leader_index, :] | ||
D_X_rand = np.abs(C * X_rand - self.positions[i, :]) | ||
new_positions[i, :] = X_rand - A * D_X_rand | ||
else: | ||
D_Leader = np.abs(C * self.leader_pos - self.positions[i, :]) | ||
new_positions[i, :] = self.leader_pos - A * D_Leader | ||
else: | ||
distance2Leader = np.abs(self.leader_pos - self.positions[i, :]) | ||
new_positions[i, :] = ( | ||
distance2Leader * np.exp(b * L) * np.cos(L * 2 * np.pi) + self.leader_pos | ||
) | ||
|
||
param_list = [ | ||
{k: v for k, v in zip(search_space.keys(), new_pos)} for new_pos in new_positions | ||
] | ||
self.queue.extend(param_list) | ||
return self.queue.pop(0) | ||
|
||
def tell(self, new_positions: np.ndarray, fitnesses: np.ndarray) -> None: | ||
self.positions = np.clip(new_positions, self.lower_bound, self.upper_bound) | ||
min_index = np.argmin(fitnesses) | ||
min_fitness = fitnesses[min_index] | ||
if min_fitness < self.leader_score: | ||
self.leader_score = min_fitness | ||
self.leader_pos = self.positions[min_index].copy() | ||
|
||
def sample_independent( | ||
self, | ||
study: "optuna.Study", | ||
trial: "optuna.trial.FrozenTrial", | ||
param_name: str, | ||
param_distribution: optuna.distributions.BaseDistribution, | ||
) -> Any: | ||
independent_sampler = optuna.samplers.RandomSampler(seed=777) | ||
return independent_sampler.sample_independent(study, trial, param_name, param_distribution) |