Skip to content

Commit

Permalink
Add a flag to enable OV inference on dGPU (#3503)
Browse files Browse the repository at this point in the history
* dGPU inference for OV models

* Extract reading of hparams in OVModel

* Fix usage of get_user_config

* Fix ruff

* Add for cpu flag to ov model

* Fix missing ov core

* Fix plugin coniguration

* Add one more unit test for OVModel

* Fix imports

* Revert inf exp changes

---------

Co-authored-by: kprokofi <[email protected]>
  • Loading branch information
sovrasov and kprokofi authored May 17, 2024
1 parent 06c7a34 commit 464884f
Show file tree
Hide file tree
Showing 8 changed files with 67 additions and 53 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@

[![python](https://img.shields.io/badge/python-3.10%2B-green)]()
[![pytorch](https://img.shields.io/badge/pytorch-2.1.1%2B-orange)]()
[![openvino](https://img.shields.io/badge/openvino-2023.3.0-purple)]()
[![openvino](https://img.shields.io/badge/openvino-2024.0-purple)]()

<!-- markdownlint-enable MD042 -->

Expand Down
37 changes: 34 additions & 3 deletions src/otx/core/model/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@

from lightning.pytorch.cli import LRSchedulerCallable, OptimizerCallable
from lightning.pytorch.utilities.types import LRSchedulerTypeUnion, OptimizerLRScheduler
from model_api.adapters import OpenvinoAdapter
from torch.optim.lr_scheduler import LRScheduler
from torch.optim.optimizer import Optimizer, params_t

Expand Down Expand Up @@ -807,6 +808,7 @@ def __init__(
model_name: str,
model_type: str,
async_inference: bool = True,
force_cpu: bool = True,
max_num_requests: int | None = None,
use_throughput_mode: bool = True,
model_api_configuration: dict[str, Any] | None = None,
Expand All @@ -815,6 +817,7 @@ def __init__(
) -> None:
self.model_name = model_name
self.model_type = model_type
self.force_cpu = force_cpu
self.async_inference = async_inference
self.num_requests = max_num_requests if max_num_requests is not None else get_default_num_async_infer_requests()
self.use_throughput_mode = use_throughput_mode
Expand All @@ -835,21 +838,49 @@ def _setup_tiler(self) -> None:
"""Setup tiler for tile task."""
raise NotImplementedError

def _get_hparams_from_adapter(self, model_adapter: OpenvinoAdapter) -> None:
"""Reads model configuration from ModelAPI OpenVINO adapter.
Args:
model_adapter (OpenvinoAdapter): target adapter to read the config
"""

def _create_model(self) -> Model:
"""Create a OV model with help of Model API."""
from model_api.adapters import OpenvinoAdapter, create_core, get_user_config
from model_api.adapters import OpenvinoAdapter, create_core

if self.device.type != "cpu":
msg = (
f"Device {self.device.type} is set for Lightning module, but the actual inference "
"device is selected by OpenVINO."
)
logger.warning(msg)

plugin_config = get_user_config("AUTO", str(self.num_requests), "AUTO")
ov_device = "CPU"
ie = create_core()
if not self.force_cpu:
devices = ie.available_devices
for device in devices:
device_name = ie.get_property(device_name=device, property="FULL_DEVICE_NAME")
if "dGPU" in device_name and "Intel" in device_name:
ov_device = device
break

plugin_config = {}
if self.use_throughput_mode:
plugin_config["PERFORMANCE_HINT"] = "THROUGHPUT"

model_adapter = OpenvinoAdapter(
create_core(),
ie,
self.model_name,
device=ov_device,
max_num_requests=self.num_requests,
plugin_config=plugin_config,
model_parameters=self.model_adapter_parameters,
)

self._get_hparams_from_adapter(model_adapter)

return Model.create_model(model_adapter, model_type=self.model_type, configuration=self.model_api_configuration)

def _customize_inputs(self, entity: T_OTXBatchDataEntity) -> dict[str, Any]:
Expand Down
12 changes: 7 additions & 5 deletions src/otx/core/model/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -672,8 +672,8 @@ def _customize_outputs(
outputs: list[ClassificationResult],
inputs: MulticlassClsBatchDataEntity,
) -> MulticlassClsBatchPredEntity:
pred_labels = [torch.tensor(out.top_labels[0][0], dtype=torch.long) for out in outputs]
pred_scores = [torch.tensor(out.top_labels[0][2]) for out in outputs]
pred_labels = [torch.tensor(out.top_labels[0][0], dtype=torch.long, device=self.device) for out in outputs]
pred_scores = [torch.tensor(out.top_labels[0][2], device=self.device) for out in outputs]

if outputs and outputs[0].saliency_map.size != 0:
# Squeeze dim 4D => 3D, (1, num_classes, H, W) => (num_classes, H, W)
Expand Down Expand Up @@ -747,7 +747,9 @@ def _customize_outputs(
outputs: list[ClassificationResult],
inputs: MultilabelClsBatchDataEntity,
) -> MultilabelClsBatchPredEntity:
pred_scores = [torch.tensor([top_label[2] for top_label in out.top_labels]) for out in outputs]
pred_scores = [
torch.tensor([top_label[2] for top_label in out.top_labels], device=self.device) for out in outputs
]

if outputs and outputs[0].saliency_map.size != 0:
# Squeeze dim 4D => 3D, (1, num_classes, H, W) => (num_classes, H, W)
Expand Down Expand Up @@ -844,8 +846,8 @@ def _customize_outputs(
else:
predicted_labels.append(0)

all_pred_labels.append(torch.tensor(predicted_labels, dtype=torch.long))
all_pred_scores.append(torch.tensor(predicted_scores))
all_pred_labels.append(torch.tensor(predicted_labels, dtype=torch.long, device=self.device))
all_pred_scores.append(torch.tensor(predicted_scores, device=self.device))

if outputs and outputs[0].saliency_map.size != 0:
# Squeeze dim 4D => 3D, (1, num_classes, H, W) => (num_classes, H, W)
Expand Down
29 changes: 9 additions & 20 deletions src/otx/core/model/detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
from typing import TYPE_CHECKING, Any, Callable, Iterator, Literal

import torch
from model_api.models import Model
from model_api.tilers import DetectionTiler
from torchvision import tv_tensors

Expand All @@ -31,6 +30,7 @@
if TYPE_CHECKING:
from lightning.pytorch.cli import LRSchedulerCallable, OptimizerCallable
from mmdet.models.data_preprocessors import DetDataPreprocessor
from model_api.adapters import OpenvinoAdapter
from model_api.models.utils import DetectionResult
from omegaconf import DictConfig
from torch import nn
Expand Down Expand Up @@ -520,22 +520,12 @@ def _setup_tiler(self) -> None:
and overlap: {self.model.tiles_overlap}",
)

def _create_model(self) -> Model:
"""Create a OV model with help of Model API."""
from model_api.adapters import OpenvinoAdapter, create_core, get_user_config

plugin_config = get_user_config("AUTO", str(self.num_requests), "AUTO")
if self.use_throughput_mode:
plugin_config["PERFORMANCE_HINT"] = "THROUGHPUT"

model_adapter = OpenvinoAdapter(
create_core(),
self.model_name,
max_num_requests=self.num_requests,
plugin_config=plugin_config,
model_parameters=self.model_adapter_parameters,
)
def _get_hparams_from_adapter(self, model_adapter: OpenvinoAdapter) -> None:
"""Reads model configuration from ModelAPI OpenVINO adapter.
Args:
model_adapter (OpenvinoAdapter): target adapter to read the config
"""
if model_adapter.model.has_rt_info(["model_info", "confidence_threshold"]):
best_confidence_threshold = model_adapter.model.get_rt_info(["model_info", "confidence_threshold"]).value
self.hparams["best_confidence_threshold"] = float(best_confidence_threshold)
Expand All @@ -549,8 +539,6 @@ def _create_model(self) -> Model:
log.warning(msg)
self.hparams["best_confidence_threshold"] = None

return Model.create_model(model_adapter, model_type=self.model_type, configuration=self.model_api_configuration)

def _customize_outputs(
self,
outputs: list[DetectionResult],
Expand Down Expand Up @@ -583,10 +571,11 @@ def _customize_outputs(
bbox,
format="XYXY",
canvas_size=inputs.imgs_info[-1].img_shape,
device=self.device,
),
)
scores.append(torch.tensor([output.score for output in output_objects]))
labels.append(torch.tensor([output.id - label_shift for output in output_objects]))
scores.append(torch.tensor([output.score for output in output_objects], device=self.device))
labels.append(torch.tensor([output.id - label_shift for output in output_objects], device=self.device))

if outputs and outputs[0].saliency_map.size > 1:
# Squeeze dim 4D => 3D, (1, num_classes, H, W) => (num_classes, H, W)
Expand Down
31 changes: 10 additions & 21 deletions src/otx/core/model/instance_segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@

import numpy as np
import torch
from model_api.models import Model
from model_api.tilers import InstanceSegmentationTiler
from torchvision import tv_tensors

Expand All @@ -36,6 +35,7 @@
if TYPE_CHECKING:
from lightning.pytorch.cli import LRSchedulerCallable, OptimizerCallable
from mmdet.models.data_preprocessors import DetDataPreprocessor
from model_api.adapters import OpenvinoAdapter
from model_api.models.utils import InstanceSegmentationResult
from omegaconf import DictConfig
from torch import nn
Expand Down Expand Up @@ -579,22 +579,12 @@ def _setup_tiler(self) -> None:
and overlap: {self.model.tiles_overlap}",
)

def _create_model(self) -> Model:
"""Create a OV model with help of Model API."""
from model_api.adapters import OpenvinoAdapter, create_core, get_user_config

plugin_config = get_user_config("AUTO", str(self.num_requests), "AUTO")
if self.use_throughput_mode:
plugin_config["PERFORMANCE_HINT"] = "THROUGHPUT"

model_adapter = OpenvinoAdapter(
create_core(),
self.model_name,
max_num_requests=self.num_requests,
plugin_config=plugin_config,
model_parameters=self.model_adapter_parameters,
)
def _get_hparams_from_adapter(self, model_adapter: OpenvinoAdapter) -> None:
"""Reads model configuration from ModelAPI OpenVINO adapter.
Args:
model_adapter (OpenvinoAdapter): target adapter to read the config
"""
if model_adapter.model.has_rt_info(["model_info", "confidence_threshold"]):
best_confidence_threshold = model_adapter.model.get_rt_info(["model_info", "confidence_threshold"]).value
self.hparams["best_confidence_threshold"] = float(best_confidence_threshold)
Expand All @@ -608,8 +598,6 @@ def _create_model(self) -> Model:
log.warning(msg)
self.hparams["best_confidence_threshold"] = None

return Model.create_model(model_adapter, model_type=self.model_type, configuration=self.model_api_configuration)

def _customize_outputs(
self,
outputs: list[InstanceSegmentationResult],
Expand All @@ -631,15 +619,16 @@ def _customize_outputs(
bbox,
format="XYXY",
canvas_size=inputs.imgs_info[-1].img_shape,
device=self.device,
),
)
# NOTE: OTX 1.5 filter predictions with result_based_confidence_threshold,
# but OTX 2.0 doesn't have it in configuration.
_masks = [output.mask for output in output_objects]
_masks = np.stack(_masks) if len(_masks) else []
scores.append(torch.tensor([output.score for output in output_objects]))
masks.append(torch.tensor(_masks))
labels.append(torch.tensor([output.id - 1 for output in output_objects]))
scores.append(torch.tensor([output.score for output in output_objects], device=self.device))
masks.append(torch.tensor(_masks, device=self.device))
labels.append(torch.tensor([output.id - 1 for output in output_objects], device=self.device))

if outputs and outputs[0].saliency_map:
predicted_s_maps = []
Expand Down
4 changes: 2 additions & 2 deletions src/otx/core/model/segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -364,7 +364,7 @@ def _customize_outputs(
images=inputs.images,
imgs_info=inputs.imgs_info,
scores=[],
masks=[tv_tensors.Mask(mask.resultImage) for mask in outputs],
masks=[tv_tensors.Mask(mask.resultImage, device=self.device) for mask in outputs],
saliency_map=predicted_s_maps,
feature_vector=predicted_f_vectors,
)
Expand All @@ -374,7 +374,7 @@ def _customize_outputs(
images=inputs.images,
imgs_info=inputs.imgs_info,
scores=[],
masks=[tv_tensors.Mask(mask.resultImage) for mask in outputs],
masks=[tv_tensors.Mask(mask.resultImage, device=self.device) for mask in outputs],
)

def _convert_pred_entity_to_compute_metric(
Expand Down
2 changes: 1 addition & 1 deletion tests/integration/cli/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -217,7 +217,7 @@ def test_otx_e2e(
"--work_dir",
str(tmp_path_test / "outputs"),
"--engine.device",
"cpu",
fxt_accelerator,
*overrides,
"--checkpoint",
exported_model_path,
Expand Down
3 changes: 3 additions & 0 deletions tests/unit/core/model/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,9 @@ def input_batch(self) -> OTXBatchDataEntity:
def model(self) -> OVModel:
return OVModel(model_name="efficientnet-b0-pytorch", model_type="Classification")

def test_create_model(self) -> None:
OVModel(model_name="efficientnet-b0-pytorch", model_type="Classification", force_cpu=False)

def test_customize_inputs(self, model, input_batch) -> None:
inputs = model._customize_inputs(input_batch)
assert isinstance(inputs, dict)
Expand Down

0 comments on commit 464884f

Please sign in to comment.