Skip to content

Commit

Permalink
Merge pull request #6104 from openjournals/joss.06878
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Nov 8, 2024
2 parents 1ae1469 + 0b356f5 commit f39beac
Show file tree
Hide file tree
Showing 5 changed files with 1,094 additions and 0 deletions.
365 changes: 365 additions & 0 deletions joss.06878/10.21105.joss.06878.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,365 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241108024212-cb086748a7f840f85e467fa25468f2c042bf0872</doi_batch_id>
<timestamp>20241108024212</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>103</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>SpatialGEV: Fast Bayesian inference for spatial extreme
value models in R</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Meixi</given_name>
<surname>Chen</surname>
<affiliations>
<institution><institution_name>Department of Statistics and Actuarial Science, University of Waterloo</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-1012-5352</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Martin</given_name>
<surname>Lysy</surname>
<affiliations>
<institution><institution_name>Department of Statistics and Actuarial Science, University of Waterloo</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-9974-1121</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Reza</given_name>
<surname>Ramezan</surname>
<affiliations>
<institution><institution_name>Department of Statistics and Actuarial Science, University of Waterloo</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-0450-3249</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>08</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6878</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06878</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13978363</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6878</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06878</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06878</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06878.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="chen-etal24">
<article_title>Fast and scalable approximate inference for
spatial extreme value models</article_title>
<author>Chen</author>
<journal_title>Canadian Journal of Statistics
(Accepted)</journal_title>
<doi>10.1002/cjs.11829</doi>
<cYear>2024</cYear>
<unstructured_citation>Chen, M., Ramezan, R., &amp; Lysy, M.
(2024). Fast and scalable approximate inference for spatial extreme
value models. Canadian Journal of Statistics (Accepted).
https://doi.org/10.1002/cjs.11829</unstructured_citation>
</citation>
<citation key="tierney-kadane86">
<article_title>Accurate approximations for posterior moments
and marginal densities</article_title>
<author>Tierney</author>
<journal_title>Journal of the American Statistical
Association</journal_title>
<volume>81</volume>
<doi>10.1080/01621459.1986.10478240</doi>
<cYear>1986</cYear>
<unstructured_citation>Tierney, L., &amp; Kadane, J. (1986).
Accurate approximations for posterior moments and marginal densities.
Journal of the American Statistical Association, 81, 82–86.
https://doi.org/10.1080/01621459.1986.10478240</unstructured_citation>
</citation>
<citation key="coles98">
<article_title>Extreme value modelling of hurricane wind
speeds</article_title>
<author>Coles</author>
<journal_title>Structural Safety</journal_title>
<volume>20</volume>
<doi>10.1111/1467-9876.00189</doi>
<cYear>1998</cYear>
<unstructured_citation>Coles, S. G., &amp; Casson, E.
(1998). Extreme value modelling of hurricane wind speeds. Structural
Safety, 20, 283–296.
https://doi.org/10.1111/1467-9876.00189</unstructured_citation>
</citation>
<citation key="cooley07">
<article_title>Bayesian spatial modeling of extreme
precipitation return levels</article_title>
<author>Cooley</author>
<journal_title>Journal of the American Statistical
Association</journal_title>
<volume>102</volume>
<doi>10.1198/016214506000000780</doi>
<cYear>2007</cYear>
<unstructured_citation>Cooley, D., Nychka, D., &amp; Naveau,
P. (2007). Bayesian spatial modeling of extreme precipitation return
levels. Journal of the American Statistical Association, 102, 824–840.
https://doi.org/10.1198/016214506000000780</unstructured_citation>
</citation>
<citation key="sang-gelfand10">
<article_title>Continuous spatial process models for spatial
extreme values</article_title>
<author>Sang</author>
<journal_title>Journal of Agricultural, Biological, and
Environmental Statistics</journal_title>
<volume>15</volume>
<doi>10.1007/s13253-009-0010-1</doi>
<cYear>2010</cYear>
<unstructured_citation>Sang, H., &amp; Gelfand, A. E.
(2010). Continuous spatial process models for spatial extreme values.
Journal of Agricultural, Biological, and Environmental Statistics, 15,
49–56. https://doi.org/10.1007/s13253-009-0010-1</unstructured_citation>
</citation>
<citation key="wood20">
<article_title>Inference and computation with generalized
additive models and their extensions</article_title>
<author>Wood</author>
<journal_title>Test</journal_title>
<volume>29</volume>
<doi>10.1007/s11749-020-00711-5</doi>
<cYear>2020</cYear>
<unstructured_citation>Wood, S. N. (2020). Inference and
computation with generalized additive models and their extensions. Test,
29, 307–339.
https://doi.org/10.1007/s11749-020-00711-5</unstructured_citation>
</citation>
<citation key="lindgren-etal21">
<article_title>The SPDE approach for Gaussian and
non-Gaussian fields: 10 years and still running</article_title>
<author>Lindgren</author>
<journal_title>Spatial Statistics</journal_title>
<doi>10.1016/j.spasta.2022.100599</doi>
<cYear>2021</cYear>
<unstructured_citation>Lindgren, F. K., Bolin, D., &amp;
Rue, H. (2021). The SPDE approach for Gaussian and non-Gaussian fields:
10 years and still running. Spatial Statistics.
https://doi.org/10.1016/j.spasta.2022.100599</unstructured_citation>
</citation>
<citation key="schliep10">
<article_title>A comparison study of extreme precipitation
from six different regional climate models via spatial hierarchical
modeling</article_title>
<author>Schliep</author>
<journal_title>Extremes</journal_title>
<volume>13</volume>
<doi>10.1007/s10687-009-0098-2</doi>
<cYear>2010</cYear>
<unstructured_citation>Schliep, E. M., Cooley, D., Sain, S.
R., &amp; Hoeting, J. A. (2010). A comparison study of extreme
precipitation from six different regional climate models via spatial
hierarchical modeling. Extremes, 13, 219–239.
https://doi.org/10.1007/s10687-009-0098-2</unstructured_citation>
</citation>
<citation key="dyrrdal15">
<article_title>Bayesian hierarchical modeling of extreme
hourly precipitation in Norway</article_title>
<author>Dyrrdal</author>
<journal_title>Environmetrics</journal_title>
<volume>26</volume>
<doi>10.1002/env.2301</doi>
<cYear>2015</cYear>
<unstructured_citation>Dyrrdal, A. V., Lenkoski, A.,
Thorarinsdottir, T. L., &amp; Stordal, F. (2015). Bayesian hierarchical
modeling of extreme hourly precipitation in Norway. Environmetrics, 26,
89–106. https://doi.org/10.1002/env.2301</unstructured_citation>
</citation>
<citation key="neal11">
<article_title>MCMC using Hamiltonian
dynamics</article_title>
<author>Neal</author>
<journal_title>The handbook of Markov Chain Monte
Carlo</journal_title>
<doi>10.1201/b10905</doi>
<cYear>2011</cYear>
<unstructured_citation>Neal, R. M. (2011). MCMC using
Hamiltonian dynamics. In The handbook of Markov Chain Monte Carlo.
Chapman &amp; Hall / CRC Press.
https://doi.org/10.1201/b10905</unstructured_citation>
</citation>
<citation key="hoffman-gelman14">
<article_title>The No-U-Turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo</article_title>
<author>Hoffman</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<volume>15</volume>
<cYear>2014</cYear>
<unstructured_citation>Hoffman, M. D., &amp; Gelman, A.
(2014). The No-U-Turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15,
1593–1623.
https://dl.acm.org/doi/10.5555/2627435.2638586</unstructured_citation>
</citation>
<citation key="rstan">
<article_title>RStan: The R interface to
Stan</article_title>
<author>Stan Development Team</author>
<doi>10.32614/CRAN.package.rstan</doi>
<cYear>2020</cYear>
<unstructured_citation>Stan Development Team. (2020). RStan:
The R interface to Stan.
https://doi.org/10.32614/CRAN.package.rstan</unstructured_citation>
</citation>
<citation key="lindgren-rue15">
<article_title>Bayesian spatial modelling with
R-INLA</article_title>
<author>Lindgren</author>
<journal_title>Journal of Statistical
Software</journal_title>
<volume>63</volume>
<doi>10.18637/jss.v063.i19</doi>
<cYear>2015</cYear>
<unstructured_citation>Lindgren, F. K., &amp; Rue, H.
(2015). Bayesian spatial modelling with R-INLA. Journal of Statistical
Software, 63, 1–25.
https://doi.org/10.18637/jss.v063.i19</unstructured_citation>
</citation>
<citation key="lindgren-etal11">
<article_title>An explicit link between Gaussian fields and
Gaussian Markov random fields: The stochastic partial differential
equation approach</article_title>
<author>Lindgren</author>
<journal_title>Journal of the Royal Statistical Society,
Series B</journal_title>
<volume>73</volume>
<doi>10.1111/j.1467-9868.2011.00777.x</doi>
<cYear>2011</cYear>
<unstructured_citation>Lindgren, F. K., Rue, H., &amp;
Lindström, J. (2011). An explicit link between Gaussian fields and
Gaussian Markov random fields: The stochastic partial differential
equation approach. Journal of the Royal Statistical Society, Series B,
73, 423–498.
https://doi.org/10.1111/j.1467-9868.2011.00777.x</unstructured_citation>
</citation>
<citation key="kristensen16">
<article_title>TMB: Automatic differentiation and Laplace
approximation</article_title>
<author>Kristensen</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>5</issue>
<volume>70</volume>
<doi>10.18637/jss.v070.i05</doi>
<cYear>2016</cYear>
<unstructured_citation>Kristensen, K., Nielsen, A., Berg, C.
W., Skaug, H., &amp; Bell, B. M. (2016). TMB: Automatic differentiation
and Laplace approximation. Journal of Statistical Software, 70(5), 1–21.
https://doi.org/10.18637/jss.v070.i05</unstructured_citation>
</citation>
<citation key="spatialextremes">
<volume_title>SpatialExtremes: Modelling spatial
extremes</volume_title>
<author>Ribatet</author>
<doi>10.32614/CRAN.package.SpatialExtremes</doi>
<cYear>2022</cYear>
<unstructured_citation>Ribatet, M., Singleton, R., &amp; R
Core team. (2022). SpatialExtremes: Modelling spatial extremes. Version
2.1-0. https://CRAN.R-project.org/package=SpatialExtremes.
https://doi.org/10.32614/CRAN.package.SpatialExtremes</unstructured_citation>
</citation>
<citation key="mgcv">
<volume_title>Mgcv: Mixed GAM computation vehicle with
automatic smoothness estimation</volume_title>
<author>Wood</author>
<doi>10.32614/CRAN.package.mgcv</doi>
<cYear>2023</cYear>
<unstructured_citation>Wood, S. N. (2023). Mgcv: Mixed GAM
computation vehicle with automatic smoothness estimation. Version 1.9-1.
https://CRAN.R-project.org/package=mgcv.
https://doi.org/10.32614/CRAN.package.mgcv</unstructured_citation>
</citation>
<citation key="youngman22">
<article_title>evgam: An R package for generalized additive
extreme value models</article_title>
<author>Youngman</author>
<journal_title>Journal of Statistical
Software</journal_title>
<volume>103</volume>
<doi>10.18637/jss.v103.i03</doi>
<cYear>2022</cYear>
<unstructured_citation>Youngman, B. D. (2022). evgam: An R
package for generalized additive extreme value models. Journal of
Statistical Software, 103, 1–26.
https://doi.org/10.18637/jss.v103.i03</unstructured_citation>
</citation>
<citation key="evd">
<article_title>Evd: Extreme value
distributions</article_title>
<author>Stephenson</author>
<journal_title>R News</journal_title>
<issue>2</issue>
<volume>2</volume>
<doi>10.32614/CRAN.package.evd</doi>
<issn>1609-3631</issn>
<cYear>2002</cYear>
<unstructured_citation>Stephenson, A. G. (2002). Evd:
Extreme value distributions. R News, 2(2), 31–32.
https://doi.org/10.32614/CRAN.package.evd</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06878/10.21105.joss.06878.pdf
Binary file not shown.
Loading

0 comments on commit f39beac

Please sign in to comment.