-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6104 from openjournals/joss.06878
Merging automatically
- Loading branch information
Showing
5 changed files
with
1,094 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,365 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20241108024212-cb086748a7f840f85e467fa25468f2c042bf0872</doi_batch_id> | ||
<timestamp>20241108024212</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>11</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>103</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>SpatialGEV: Fast Bayesian inference for spatial extreme | ||
value models in R</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Meixi</given_name> | ||
<surname>Chen</surname> | ||
<affiliations> | ||
<institution><institution_name>Department of Statistics and Actuarial Science, University of Waterloo</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0003-1012-5352</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Martin</given_name> | ||
<surname>Lysy</surname> | ||
<affiliations> | ||
<institution><institution_name>Department of Statistics and Actuarial Science, University of Waterloo</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0001-9974-1121</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Reza</given_name> | ||
<surname>Ramezan</surname> | ||
<affiliations> | ||
<institution><institution_name>Department of Statistics and Actuarial Science, University of Waterloo</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0003-0450-3249</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>11</month> | ||
<day>08</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6878</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06878</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13978363</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6878</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06878</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06878</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06878.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="chen-etal24"> | ||
<article_title>Fast and scalable approximate inference for | ||
spatial extreme value models</article_title> | ||
<author>Chen</author> | ||
<journal_title>Canadian Journal of Statistics | ||
(Accepted)</journal_title> | ||
<doi>10.1002/cjs.11829</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Chen, M., Ramezan, R., & Lysy, M. | ||
(2024). Fast and scalable approximate inference for spatial extreme | ||
value models. Canadian Journal of Statistics (Accepted). | ||
https://doi.org/10.1002/cjs.11829</unstructured_citation> | ||
</citation> | ||
<citation key="tierney-kadane86"> | ||
<article_title>Accurate approximations for posterior moments | ||
and marginal densities</article_title> | ||
<author>Tierney</author> | ||
<journal_title>Journal of the American Statistical | ||
Association</journal_title> | ||
<volume>81</volume> | ||
<doi>10.1080/01621459.1986.10478240</doi> | ||
<cYear>1986</cYear> | ||
<unstructured_citation>Tierney, L., & Kadane, J. (1986). | ||
Accurate approximations for posterior moments and marginal densities. | ||
Journal of the American Statistical Association, 81, 82–86. | ||
https://doi.org/10.1080/01621459.1986.10478240</unstructured_citation> | ||
</citation> | ||
<citation key="coles98"> | ||
<article_title>Extreme value modelling of hurricane wind | ||
speeds</article_title> | ||
<author>Coles</author> | ||
<journal_title>Structural Safety</journal_title> | ||
<volume>20</volume> | ||
<doi>10.1111/1467-9876.00189</doi> | ||
<cYear>1998</cYear> | ||
<unstructured_citation>Coles, S. G., & Casson, E. | ||
(1998). Extreme value modelling of hurricane wind speeds. Structural | ||
Safety, 20, 283–296. | ||
https://doi.org/10.1111/1467-9876.00189</unstructured_citation> | ||
</citation> | ||
<citation key="cooley07"> | ||
<article_title>Bayesian spatial modeling of extreme | ||
precipitation return levels</article_title> | ||
<author>Cooley</author> | ||
<journal_title>Journal of the American Statistical | ||
Association</journal_title> | ||
<volume>102</volume> | ||
<doi>10.1198/016214506000000780</doi> | ||
<cYear>2007</cYear> | ||
<unstructured_citation>Cooley, D., Nychka, D., & Naveau, | ||
P. (2007). Bayesian spatial modeling of extreme precipitation return | ||
levels. Journal of the American Statistical Association, 102, 824–840. | ||
https://doi.org/10.1198/016214506000000780</unstructured_citation> | ||
</citation> | ||
<citation key="sang-gelfand10"> | ||
<article_title>Continuous spatial process models for spatial | ||
extreme values</article_title> | ||
<author>Sang</author> | ||
<journal_title>Journal of Agricultural, Biological, and | ||
Environmental Statistics</journal_title> | ||
<volume>15</volume> | ||
<doi>10.1007/s13253-009-0010-1</doi> | ||
<cYear>2010</cYear> | ||
<unstructured_citation>Sang, H., & Gelfand, A. E. | ||
(2010). Continuous spatial process models for spatial extreme values. | ||
Journal of Agricultural, Biological, and Environmental Statistics, 15, | ||
49–56. https://doi.org/10.1007/s13253-009-0010-1</unstructured_citation> | ||
</citation> | ||
<citation key="wood20"> | ||
<article_title>Inference and computation with generalized | ||
additive models and their extensions</article_title> | ||
<author>Wood</author> | ||
<journal_title>Test</journal_title> | ||
<volume>29</volume> | ||
<doi>10.1007/s11749-020-00711-5</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Wood, S. N. (2020). Inference and | ||
computation with generalized additive models and their extensions. Test, | ||
29, 307–339. | ||
https://doi.org/10.1007/s11749-020-00711-5</unstructured_citation> | ||
</citation> | ||
<citation key="lindgren-etal21"> | ||
<article_title>The SPDE approach for Gaussian and | ||
non-Gaussian fields: 10 years and still running</article_title> | ||
<author>Lindgren</author> | ||
<journal_title>Spatial Statistics</journal_title> | ||
<doi>10.1016/j.spasta.2022.100599</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Lindgren, F. K., Bolin, D., & | ||
Rue, H. (2021). The SPDE approach for Gaussian and non-Gaussian fields: | ||
10 years and still running. Spatial Statistics. | ||
https://doi.org/10.1016/j.spasta.2022.100599</unstructured_citation> | ||
</citation> | ||
<citation key="schliep10"> | ||
<article_title>A comparison study of extreme precipitation | ||
from six different regional climate models via spatial hierarchical | ||
modeling</article_title> | ||
<author>Schliep</author> | ||
<journal_title>Extremes</journal_title> | ||
<volume>13</volume> | ||
<doi>10.1007/s10687-009-0098-2</doi> | ||
<cYear>2010</cYear> | ||
<unstructured_citation>Schliep, E. M., Cooley, D., Sain, S. | ||
R., & Hoeting, J. A. (2010). A comparison study of extreme | ||
precipitation from six different regional climate models via spatial | ||
hierarchical modeling. Extremes, 13, 219–239. | ||
https://doi.org/10.1007/s10687-009-0098-2</unstructured_citation> | ||
</citation> | ||
<citation key="dyrrdal15"> | ||
<article_title>Bayesian hierarchical modeling of extreme | ||
hourly precipitation in Norway</article_title> | ||
<author>Dyrrdal</author> | ||
<journal_title>Environmetrics</journal_title> | ||
<volume>26</volume> | ||
<doi>10.1002/env.2301</doi> | ||
<cYear>2015</cYear> | ||
<unstructured_citation>Dyrrdal, A. V., Lenkoski, A., | ||
Thorarinsdottir, T. L., & Stordal, F. (2015). Bayesian hierarchical | ||
modeling of extreme hourly precipitation in Norway. Environmetrics, 26, | ||
89–106. https://doi.org/10.1002/env.2301</unstructured_citation> | ||
</citation> | ||
<citation key="neal11"> | ||
<article_title>MCMC using Hamiltonian | ||
dynamics</article_title> | ||
<author>Neal</author> | ||
<journal_title>The handbook of Markov Chain Monte | ||
Carlo</journal_title> | ||
<doi>10.1201/b10905</doi> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Neal, R. M. (2011). MCMC using | ||
Hamiltonian dynamics. In The handbook of Markov Chain Monte Carlo. | ||
Chapman & Hall / CRC Press. | ||
https://doi.org/10.1201/b10905</unstructured_citation> | ||
</citation> | ||
<citation key="hoffman-gelman14"> | ||
<article_title>The No-U-Turn sampler: Adaptively setting | ||
path lengths in Hamiltonian Monte Carlo</article_title> | ||
<author>Hoffman</author> | ||
<journal_title>Journal of Machine Learning | ||
Research</journal_title> | ||
<volume>15</volume> | ||
<cYear>2014</cYear> | ||
<unstructured_citation>Hoffman, M. D., & Gelman, A. | ||
(2014). The No-U-Turn sampler: Adaptively setting path lengths in | ||
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, | ||
1593–1623. | ||
https://dl.acm.org/doi/10.5555/2627435.2638586</unstructured_citation> | ||
</citation> | ||
<citation key="rstan"> | ||
<article_title>RStan: The R interface to | ||
Stan</article_title> | ||
<author>Stan Development Team</author> | ||
<doi>10.32614/CRAN.package.rstan</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Stan Development Team. (2020). RStan: | ||
The R interface to Stan. | ||
https://doi.org/10.32614/CRAN.package.rstan</unstructured_citation> | ||
</citation> | ||
<citation key="lindgren-rue15"> | ||
<article_title>Bayesian spatial modelling with | ||
R-INLA</article_title> | ||
<author>Lindgren</author> | ||
<journal_title>Journal of Statistical | ||
Software</journal_title> | ||
<volume>63</volume> | ||
<doi>10.18637/jss.v063.i19</doi> | ||
<cYear>2015</cYear> | ||
<unstructured_citation>Lindgren, F. K., & Rue, H. | ||
(2015). Bayesian spatial modelling with R-INLA. Journal of Statistical | ||
Software, 63, 1–25. | ||
https://doi.org/10.18637/jss.v063.i19</unstructured_citation> | ||
</citation> | ||
<citation key="lindgren-etal11"> | ||
<article_title>An explicit link between Gaussian fields and | ||
Gaussian Markov random fields: The stochastic partial differential | ||
equation approach</article_title> | ||
<author>Lindgren</author> | ||
<journal_title>Journal of the Royal Statistical Society, | ||
Series B</journal_title> | ||
<volume>73</volume> | ||
<doi>10.1111/j.1467-9868.2011.00777.x</doi> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Lindgren, F. K., Rue, H., & | ||
Lindström, J. (2011). An explicit link between Gaussian fields and | ||
Gaussian Markov random fields: The stochastic partial differential | ||
equation approach. Journal of the Royal Statistical Society, Series B, | ||
73, 423–498. | ||
https://doi.org/10.1111/j.1467-9868.2011.00777.x</unstructured_citation> | ||
</citation> | ||
<citation key="kristensen16"> | ||
<article_title>TMB: Automatic differentiation and Laplace | ||
approximation</article_title> | ||
<author>Kristensen</author> | ||
<journal_title>Journal of Statistical | ||
Software</journal_title> | ||
<issue>5</issue> | ||
<volume>70</volume> | ||
<doi>10.18637/jss.v070.i05</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Kristensen, K., Nielsen, A., Berg, C. | ||
W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic differentiation | ||
and Laplace approximation. Journal of Statistical Software, 70(5), 1–21. | ||
https://doi.org/10.18637/jss.v070.i05</unstructured_citation> | ||
</citation> | ||
<citation key="spatialextremes"> | ||
<volume_title>SpatialExtremes: Modelling spatial | ||
extremes</volume_title> | ||
<author>Ribatet</author> | ||
<doi>10.32614/CRAN.package.SpatialExtremes</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Ribatet, M., Singleton, R., & R | ||
Core team. (2022). SpatialExtremes: Modelling spatial extremes. Version | ||
2.1-0. https://CRAN.R-project.org/package=SpatialExtremes. | ||
https://doi.org/10.32614/CRAN.package.SpatialExtremes</unstructured_citation> | ||
</citation> | ||
<citation key="mgcv"> | ||
<volume_title>Mgcv: Mixed GAM computation vehicle with | ||
automatic smoothness estimation</volume_title> | ||
<author>Wood</author> | ||
<doi>10.32614/CRAN.package.mgcv</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Wood, S. N. (2023). Mgcv: Mixed GAM | ||
computation vehicle with automatic smoothness estimation. Version 1.9-1. | ||
https://CRAN.R-project.org/package=mgcv. | ||
https://doi.org/10.32614/CRAN.package.mgcv</unstructured_citation> | ||
</citation> | ||
<citation key="youngman22"> | ||
<article_title>evgam: An R package for generalized additive | ||
extreme value models</article_title> | ||
<author>Youngman</author> | ||
<journal_title>Journal of Statistical | ||
Software</journal_title> | ||
<volume>103</volume> | ||
<doi>10.18637/jss.v103.i03</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Youngman, B. D. (2022). evgam: An R | ||
package for generalized additive extreme value models. Journal of | ||
Statistical Software, 103, 1–26. | ||
https://doi.org/10.18637/jss.v103.i03</unstructured_citation> | ||
</citation> | ||
<citation key="evd"> | ||
<article_title>Evd: Extreme value | ||
distributions</article_title> | ||
<author>Stephenson</author> | ||
<journal_title>R News</journal_title> | ||
<issue>2</issue> | ||
<volume>2</volume> | ||
<doi>10.32614/CRAN.package.evd</doi> | ||
<issn>1609-3631</issn> | ||
<cYear>2002</cYear> | ||
<unstructured_citation>Stephenson, A. G. (2002). Evd: | ||
Extreme value distributions. R News, 2(2), 31–32. | ||
https://doi.org/10.32614/CRAN.package.evd</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Binary file not shown.
Oops, something went wrong.