Skip to content

Commit

Permalink
Merge pull request #6302 from openjournals/joss.07226
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jan 6, 2025
2 parents 4910a24 + 419a333 commit 9e750c2
Show file tree
Hide file tree
Showing 4 changed files with 818 additions and 0 deletions.
207 changes: 207 additions & 0 deletions joss.07226/10.21105.joss.07226.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20250106152355-a75a657e37a0f78a34d58134370213ee59900a4f</doi_batch_id>
<timestamp>20250106152355</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2025</year>
</publication_date>
<journal_volume>
<volume>10</volume>
</journal_volume>
<issue>105</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>DeepRiver: A Deep Learning Library for Data Streams</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Cedric</given_name>
<surname>Kulbach</surname>
<affiliations>
<institution><institution_name>FZI Research Center for Information Technology, Karlsruhe, Germany</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-9363-4728</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Lucas</given_name>
<surname>Cazzonelli</surname>
<affiliations>
<institution><institution_name>FZI Research Center for Information Technology, Karlsruhe, Germany</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-2886-1219</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Hoang-Anh</given_name>
<surname>Ngo</surname>
<affiliations>
<institution><institution_name>AI Institute, University of Waikato, Hamilton, New Zealand</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-7583-753X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Max</given_name>
<surname>Halford</surname>
<affiliations>
<institution><institution_name>Carbonfact, Paris, France</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-1464-4520</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Saulo Martiello</given_name>
<surname>Mastelini</surname>
<affiliations>
<institution><institution_name>Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-0092-3572</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>06</day>
<year>2025</year>
</publication_date>
<pages>
<first_page>7226</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07226</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14601979</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7226</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07226</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07226</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07226.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="montiel2021river">
<article_title>River: Machine learning for streaming data in Python</article_title>
<author>Montiel</author>
<journal_title>Journal of Machine Learning Research</journal_title>
<issue>110</issue>
<volume>22</volume>
<cYear>2021</cYear>
<unstructured_citation>Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H. M., Read, J., Abdessalem, T., &amp; Bifet, A. (2021). River: Machine learning for streaming data in Python. Journal of Machine Learning Research, 22(110), 1–8. http://jmlr.org/papers/v22/20-1380.html</unstructured_citation>
</citation>
<citation key="kulbach2024retrospectivetutorialopportunitieschallenges">
<article_title>A retrospective of the tutorial on opportunities and challenges of online deep learning</article_title>
<author>Kulbach</author>
<doi>10.48550/arXiv.2405.17222</doi>
<cYear>2024</cYear>
<unstructured_citation>Kulbach, C., Cazzonelli, L., Ngo, H.-A., Le-Nguyen, M.-H., &amp; Bifet, A. (2024). A retrospective of the tutorial on opportunities and challenges of online deep learning. https://doi.org/10.48550/arXiv.2405.17222</unstructured_citation>
</citation>
<citation key="cazzonelli2022detecting">
<article_title>Detecting anomalies with autoencoders on data streams</article_title>
<author>Cazzonelli</author>
<journal_title>Joint european conference on machine learning and knowledge discovery in databases</journal_title>
<doi>10.1007/978-3-031-26387-3_16</doi>
<cYear>2022</cYear>
<unstructured_citation>Cazzonelli, L., &amp; Kulbach, C. (2022). Detecting anomalies with autoencoders on data streams. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 258–274. https://doi.org/10.1007/978-3-031-26387-3_16</unstructured_citation>
</citation>
<citation key="paszke2017automatic">
<article_title>Automatic differentiation in PyTorch</article_title>
<author>Paszke</author>
<cYear>2017</cYear>
<unstructured_citation>Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., &amp; Lerer, A. (2017). Automatic differentiation in PyTorch. https://api.semanticscholar.org/CorpusID:40027675</unstructured_citation>
</citation>
<citation key="bayram2022concept">
<article_title>From concept drift to model degradation: An overview on performance-aware drift detectors</article_title>
<author>Bayram</author>
<journal_title>Knowledge-Based Systems</journal_title>
<volume>245</volume>
<doi>10.1016/j.knosys.2022.108632</doi>
<cYear>2022</cYear>
<unstructured_citation>Bayram, F., Ahmed, B. S., &amp; Kassler, A. (2022). From concept drift to model degradation: An overview on performance-aware drift detectors. Knowledge-Based Systems, 245, 108632. https://doi.org/10.1016/j.knosys.2022.108632</unstructured_citation>
</citation>
<citation key="lu2018learning">
<article_title>Learning under concept drift: A review</article_title>
<author>Lu</author>
<journal_title>IEEE transactions on knowledge and data engineering</journal_title>
<issue>12</issue>
<volume>31</volume>
<doi>10.1109/TKDE.2018.2876857</doi>
<cYear>2018</cYear>
<unstructured_citation>Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., &amp; Zhang, G. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363. https://doi.org/10.1109/TKDE.2018.2876857</unstructured_citation>
</citation>
<citation key="JMLR:v11:bifet10a">
<article_title>MOA: Massive online analysis</article_title>
<author>Bifet</author>
<journal_title>Journal of Machine Learning Research</journal_title>
<issue>52</issue>
<volume>11</volume>
<cYear>2010</cYear>
<unstructured_citation>Bifet, A., Holmes, G., Kirkby, R., &amp; Pfahringer, B. (2010). MOA: Massive online analysis. Journal of Machine Learning Research, 11(52), 1601–1604. http://jmlr.org/papers/v11/bifet10a.html</unstructured_citation>
</citation>
<citation key="JMLR:v19:18-251">
<article_title>Scikit-multiflow: A multi-output streaming framework</article_title>
<author>Montiel</author>
<journal_title>Journal of Machine Learning Research</journal_title>
<issue>72</issue>
<volume>19</volume>
<cYear>2018</cYear>
<unstructured_citation>Montiel, J., Read, J., Bifet, A., &amp; Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1–5. http://jmlr.org/papers/v19/18-251.html</unstructured_citation>
</citation>
<citation key="creme">
<article_title>creme, a Python library for online machine learning</article_title>
<author>Halford</author>
<cYear>2020</cYear>
<unstructured_citation>Halford, M., Bolmier, G., Sourty, R., Vaysse, R., &amp; Zouitine, A. (2020). creme, a Python library for online machine learning (Version 0.6.1). https://github.com/MaxHalford/creme</unstructured_citation>
</citation>
<citation key="capymoaCapyMOAx2024">
<article_title>CapyMOA — capymoa.org</article_title>
<author>CapyMOA Developers</author>
<cYear>2024</cYear>
<unstructured_citation>CapyMOA Developers. (2024). CapyMOA — capymoa.org. https://capymoa.org.</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07226/10.21105.joss.07226.pdf
Binary file not shown.
Loading

0 comments on commit 9e750c2

Please sign in to comment.