-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6302 from openjournals/joss.07226
Merging automatically
- Loading branch information
Showing
4 changed files
with
818 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20250106152355-a75a657e37a0f78a34d58134370213ee59900a4f</doi_batch_id> | ||
<timestamp>20250106152355</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>01</month> | ||
<year>2025</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>10</volume> | ||
</journal_volume> | ||
<issue>105</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>DeepRiver: A Deep Learning Library for Data Streams</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Cedric</given_name> | ||
<surname>Kulbach</surname> | ||
<affiliations> | ||
<institution><institution_name>FZI Research Center for Information Technology, Karlsruhe, Germany</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0002-9363-4728</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Lucas</given_name> | ||
<surname>Cazzonelli</surname> | ||
<affiliations> | ||
<institution><institution_name>FZI Research Center for Information Technology, Karlsruhe, Germany</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0003-2886-1219</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Hoang-Anh</given_name> | ||
<surname>Ngo</surname> | ||
<affiliations> | ||
<institution><institution_name>AI Institute, University of Waikato, Hamilton, New Zealand</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0002-7583-753X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Max</given_name> | ||
<surname>Halford</surname> | ||
<affiliations> | ||
<institution><institution_name>Carbonfact, Paris, France</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0003-1464-4520</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Saulo Martiello</given_name> | ||
<surname>Mastelini</surname> | ||
<affiliations> | ||
<institution><institution_name>Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0002-0092-3572</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>01</month> | ||
<day>06</day> | ||
<year>2025</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>7226</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.07226</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14601979</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7226</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.07226</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.07226</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07226.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="montiel2021river"> | ||
<article_title>River: Machine learning for streaming data in Python</article_title> | ||
<author>Montiel</author> | ||
<journal_title>Journal of Machine Learning Research</journal_title> | ||
<issue>110</issue> | ||
<volume>22</volume> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H. M., Read, J., Abdessalem, T., & Bifet, A. (2021). River: Machine learning for streaming data in Python. Journal of Machine Learning Research, 22(110), 1–8. http://jmlr.org/papers/v22/20-1380.html</unstructured_citation> | ||
</citation> | ||
<citation key="kulbach2024retrospectivetutorialopportunitieschallenges"> | ||
<article_title>A retrospective of the tutorial on opportunities and challenges of online deep learning</article_title> | ||
<author>Kulbach</author> | ||
<doi>10.48550/arXiv.2405.17222</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Kulbach, C., Cazzonelli, L., Ngo, H.-A., Le-Nguyen, M.-H., & Bifet, A. (2024). A retrospective of the tutorial on opportunities and challenges of online deep learning. https://doi.org/10.48550/arXiv.2405.17222</unstructured_citation> | ||
</citation> | ||
<citation key="cazzonelli2022detecting"> | ||
<article_title>Detecting anomalies with autoencoders on data streams</article_title> | ||
<author>Cazzonelli</author> | ||
<journal_title>Joint european conference on machine learning and knowledge discovery in databases</journal_title> | ||
<doi>10.1007/978-3-031-26387-3_16</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Cazzonelli, L., & Kulbach, C. (2022). Detecting anomalies with autoencoders on data streams. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 258–274. https://doi.org/10.1007/978-3-031-26387-3_16</unstructured_citation> | ||
</citation> | ||
<citation key="paszke2017automatic"> | ||
<article_title>Automatic differentiation in PyTorch</article_title> | ||
<author>Paszke</author> | ||
<cYear>2017</cYear> | ||
<unstructured_citation>Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch. https://api.semanticscholar.org/CorpusID:40027675</unstructured_citation> | ||
</citation> | ||
<citation key="bayram2022concept"> | ||
<article_title>From concept drift to model degradation: An overview on performance-aware drift detectors</article_title> | ||
<author>Bayram</author> | ||
<journal_title>Knowledge-Based Systems</journal_title> | ||
<volume>245</volume> | ||
<doi>10.1016/j.knosys.2022.108632</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Bayram, F., Ahmed, B. S., & Kassler, A. (2022). From concept drift to model degradation: An overview on performance-aware drift detectors. Knowledge-Based Systems, 245, 108632. https://doi.org/10.1016/j.knosys.2022.108632</unstructured_citation> | ||
</citation> | ||
<citation key="lu2018learning"> | ||
<article_title>Learning under concept drift: A review</article_title> | ||
<author>Lu</author> | ||
<journal_title>IEEE transactions on knowledge and data engineering</journal_title> | ||
<issue>12</issue> | ||
<volume>31</volume> | ||
<doi>10.1109/TKDE.2018.2876857</doi> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363. https://doi.org/10.1109/TKDE.2018.2876857</unstructured_citation> | ||
</citation> | ||
<citation key="JMLR:v11:bifet10a"> | ||
<article_title>MOA: Massive online analysis</article_title> | ||
<author>Bifet</author> | ||
<journal_title>Journal of Machine Learning Research</journal_title> | ||
<issue>52</issue> | ||
<volume>11</volume> | ||
<cYear>2010</cYear> | ||
<unstructured_citation>Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis. Journal of Machine Learning Research, 11(52), 1601–1604. http://jmlr.org/papers/v11/bifet10a.html</unstructured_citation> | ||
</citation> | ||
<citation key="JMLR:v19:18-251"> | ||
<article_title>Scikit-multiflow: A multi-output streaming framework</article_title> | ||
<author>Montiel</author> | ||
<journal_title>Journal of Machine Learning Research</journal_title> | ||
<issue>72</issue> | ||
<volume>19</volume> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1–5. http://jmlr.org/papers/v19/18-251.html</unstructured_citation> | ||
</citation> | ||
<citation key="creme"> | ||
<article_title>creme, a Python library for online machine learning</article_title> | ||
<author>Halford</author> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Halford, M., Bolmier, G., Sourty, R., Vaysse, R., & Zouitine, A. (2020). creme, a Python library for online machine learning (Version 0.6.1). https://github.com/MaxHalford/creme</unstructured_citation> | ||
</citation> | ||
<citation key="capymoaCapyMOAx2024"> | ||
<article_title>CapyMOA — capymoa.org</article_title> | ||
<author>CapyMOA Developers</author> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>CapyMOA Developers. (2024). CapyMOA — capymoa.org. https://capymoa.org.</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Binary file not shown.
Oops, something went wrong.