Skip to content

Commit

Permalink
Merge pull request #6347 from openjournals/joss.07606
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jan 18, 2025
2 parents 1467807 + 2f34e47 commit 87d128f
Show file tree
Hide file tree
Showing 4 changed files with 1,230 additions and 0 deletions.
249 changes: 249 additions & 0 deletions joss.07606/10.21105.joss.07606.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20250118170553-199c16babe920ba975d7ac6f884862cde87b9c3b</doi_batch_id>
<timestamp>20250118170553</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2025</year>
</publication_date>
<journal_volume>
<volume>10</volume>
</journal_volume>
<issue>105</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>SBIAX: Density-estimation simulation-based inference in JAX</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jed</given_name>
<surname>Homer</surname>
<affiliations>
<institution><institution_name>University Observatory, Faculty for Physics, Ludwig-Maximilians-Universität München, Scheinerstrasse 1, München, Deustchland.</institution_name><institution_id type="ror">https://ror.org/00hx57361</institution_id></institution>
<institution><institution_name>Munich Center for Machine Learning.</institution_name><institution_id type="ror">https://ror.org/00hx57361</institution_id></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0002-0985-1437</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Oliver</given_name>
<surname>Friedrich</surname>
<affiliations>
<institution><institution_name>University Observatory, Faculty for Physics, Ludwig-Maximilians-Universität München, Scheinerstrasse 1, München, Deustchland.</institution_name><institution_id type="ror">https://ror.org/00hx57361</institution_id></institution>
<institution><institution_name>Munich Center for Machine Learning.</institution_name><institution_id type="ror">https://ror.org/00hx57361</institution_id></institution>
<institution><institution_name>Excellence Cluster ORIGINS, Boltzmannstr. 2, 85748 Garching, Deutschland.</institution_name><institution_id type="ror">https://ror.org/00hx57361</institution_id></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-6120-4988</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>18</day>
<year>2025</year>
</publication_date>
<pages>
<first_page>7606</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07606</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14679498</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7606</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07606</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07606</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07606.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ffjord">
<article_title>FFJORD: Free-form continuous dynamics for scalable reversible generative models</article_title>
<author>Grathwohl</author>
<cYear>2018</cYear>
<unstructured_citation>Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever, I., &amp; Duvenaud, D. (2018). FFJORD: Free-form continuous dynamics for scalable reversible generative models. https://arxiv.org/abs/1810.01367</unstructured_citation>
</citation>
<citation key="blackjax">
<article_title>BlackJAX: Composable Bayesian inference in JAX</article_title>
<author>Cabezas</author>
<cYear>2024</cYear>
<unstructured_citation>Cabezas, A., Corenflos, A., Lao, J., &amp; Louf, R. (2024). BlackJAX: Composable Bayesian inference in JAX. https://arxiv.org/abs/2402.10797</unstructured_citation>
</citation>
<citation key="mafs">
<article_title>Masked autoregressive flow for density estimation</article_title>
<author>Papamakarios</author>
<cYear>2018</cYear>
<unstructured_citation>Papamakarios, G., Pavlakou, T., &amp; Murray, I. (2018). Masked autoregressive flow for density estimation. https://arxiv.org/abs/1705.07057</unstructured_citation>
</citation>
<citation key="flowjax">
<article_title>FlowJAX: Distributions and normalizing flows in JAX</article_title>
<author>Ward</author>
<doi>10.5281/zenodo.10402073</doi>
<cYear>2024</cYear>
<unstructured_citation>Ward, D. (2024). FlowJAX: Distributions and normalizing flows in JAX (Version 16.0.0). https://doi.org/10.5281/zenodo.10402073</unstructured_citation>
</citation>
<citation key="flowmatching">
<article_title>Flow matching for generative modeling</article_title>
<author>Lipman</author>
<cYear>2023</cYear>
<unstructured_citation>Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., &amp; Le, M. (2023). Flow matching for generative modeling. https://arxiv.org/abs/2210.02747</unstructured_citation>
</citation>
<citation key="optuna">
<article_title>Optuna: A next-generation hyperparameter optimization framework</article_title>
<author>Akiba</author>
<journal_title>The 25th ACM SIGKDD international conference on knowledge discovery &amp; data mining</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Akiba, T., Sano, S., Yanase, T., Ohta, T., &amp; Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. The 25th ACM SIGKDD International Conference on Knowledge Discovery &amp; Data Mining, 2623–2631.</unstructured_citation>
</citation>
<citation key="sbi">
<article_title>The frontier of simulation-based inference</article_title>
<author>Cranmer</author>
<journal_title>Proceedings of the National Academy of Sciences</journal_title>
<issue>48</issue>
<volume>117</volume>
<doi>10.1073/pnas.1912789117</doi>
<issn>1091-6490</issn>
<cYear>2020</cYear>
<unstructured_citation>Cranmer, K., Brehmer, J., &amp; Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48), 30055–30062. https://doi.org/10.1073/pnas.1912789117</unstructured_citation>
</citation>
<citation key="delfi">
<article_title>Fast likelihood-free cosmology with neural density estimators and active learning</article_title>
<author>Alsing</author>
<journal_title>Monthly Notices of the Royal Astronomical Society</journal_title>
<doi>10.1093/mnras/stz1960</doi>
<issn>1365-2966</issn>
<cYear>2019</cYear>
<unstructured_citation>Alsing, J., Charnock, T., Feeney, S., &amp; Wandelt, B. (2019). Fast likelihood-free cosmology with neural density estimators and active learning. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stz1960</unstructured_citation>
</citation>
<citation key="papamakarios">
<article_title>Neural density estimation and likelihood-free inference</article_title>
<author>Papamakarios</author>
<cYear>2019</cYear>
<unstructured_citation>Papamakarios, G. (2019). Neural density estimation and likelihood-free inference. https://arxiv.org/abs/1910.13233</unstructured_citation>
</citation>
<citation key="npe">
<article_title>Automatic posterior transformation for likelihood-free inference</article_title>
<author>Greenberg</author>
<cYear>2019</cYear>
<unstructured_citation>Greenberg, D. S., Nonnenmacher, M., &amp; Macke, J. H. (2019). Automatic posterior transformation for likelihood-free inference. https://arxiv.org/abs/1905.07488</unstructured_citation>
</citation>
<citation key="jax">
<article_title>JAX: Composable transformations of Python+NumPy programs</article_title>
<author>Bradbury</author>
<cYear>2018</cYear>
<unstructured_citation>Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., &amp; Zhang, Q. (2018). JAX: Composable transformations of Python+NumPy programs (Version 0.3.13). http://github.com/jax-ml/jax</unstructured_citation>
</citation>
<citation key="equinox">
<article_title>Equinox: Neural networks in JAX via callable PyTrees and filtered transformations</article_title>
<author>Kidger</author>
<journal_title>Differentiable Programming workshop at Neural Information Processing Systems 2021</journal_title>
<cYear>2021</cYear>
<unstructured_citation>Kidger, P., &amp; Garcia, C. (2021). Equinox: Neural networks in JAX via callable PyTrees and filtered transformations. Differentiable Programming Workshop at Neural Information Processing Systems 2021.</unstructured_citation>
</citation>
<citation key="optax">
<article_title>The DeepMind JAX Ecosystem</article_title>
<author>DeepMind</author>
<cYear>2020</cYear>
<unstructured_citation>DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J., Jones, C., Hemsley, R., Hennigan, T., Hessel, M., Hou, S., … Viola, F. (2020). The DeepMind JAX Ecosystem. http://github.com/google-deepmind</unstructured_citation>
</citation>
<citation key="diffrax">
<article_title>On neural differential equations</article_title>
<author>Kidger</author>
<cYear>2022</cYear>
<unstructured_citation>Kidger, P. (2022). On neural differential equations. https://arxiv.org/abs/2202.02435</unstructured_citation>
</citation>
<citation key="homersbi">
<article_title>Simulation-based inference has its own Dodelson-Schneider effect (but it knows that it does)</article_title>
<author>Homer</author>
<cYear>2024</cYear>
<unstructured_citation>Homer, J., Friedrich, O., &amp; Gruen, D. (2024). Simulation-based inference has its own Dodelson-Schneider effect (but it knows that it does). https://arxiv.org/abs/2412.02311</unstructured_citation>
</citation>
<citation key="sbimacke">
<article_title>Sbi: A toolkit for simulation-based inference</article_title>
<author>Tejero-Cantero</author>
<journal_title>Journal of Open Source Software</journal_title>
<issue>52</issue>
<volume>5</volume>
<doi>10.21105/joss.02505</doi>
<cYear>2020</cYear>
<unstructured_citation>Tejero-Cantero, A., Boelts, J., Deistler, M., Lueckmann, J.-M., Durkan, C., Gonçalves, P. J., Greenberg, D. S., &amp; Macke, J. H. (2020). Sbi: A toolkit for simulation-based inference. Journal of Open Source Software, 5(52), 2505. https://doi.org/10.21105/joss.02505</unstructured_citation>
</citation>
<citation key="sbidirmeier">
<article_title>SBIJAX: Simulation-based inference in JAX.</article_title>
<author>Dirmeir</author>
<cYear>2024</cYear>
<unstructured_citation>Dirmeir, S. (2024). SBIJAX: Simulation-based inference in JAX. (Version 0.3.0). https://github.com/dirmeier/sbijax</unstructured_citation>
</citation>
<citation key="Euclid">
<article_title>Euclid definition study report</article_title>
<author>Laureijs</author>
<cYear>2011</cYear>
<unstructured_citation>Laureijs, R., Amiaux, J., Arduini, S., Auguères, J. -L., Brinchmann, J., Cole, R., Cropper, M., Dabin, C., Duvet, L., Ealet, A., Garilli, B., Gondoin, P., Guzzo, L., Hoar, J., Hoekstra, H., Holmes, R., Kitching, T., Maciaszek, T., Mellier, Y., … Zucca, E. (2011). Euclid definition study report. https://arxiv.org/abs/1110.3193</unstructured_citation>
</citation>
<citation key="DESI">
<article_title>The dark energy spectroscopic instrument (DESI)</article_title>
<author>Levi</author>
<cYear>2019</cYear>
<unstructured_citation>Levi, M. E., Allen, L. E., Raichoor, A., Baltay, C., BenZvi, S., Beutler, F., Bolton, A., Castander, F. J., Chuang, C.-H., Cooper, A., Cuby, J.-G., Dey, A., Eisenstein, D., Fan, X., Flaugher, B., Frenk, C., Gonzalez-Morales, A. X., Graur, O., Guy, J., … Zu, Y. (2019). The dark energy spectroscopic instrument (DESI). https://arxiv.org/abs/1907.10688</unstructured_citation>
</citation>
<citation key="ABC">
<article_title>Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician</article_title>
<author>Rubin</author>
<journal_title>The Annals of Statistics</journal_title>
<issue>4</issue>
<volume>12</volume>
<doi>10.1214/aos/1176346785</doi>
<cYear>1984</cYear>
<unstructured_citation>Rubin, D. B. (1984). Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician. The Annals of Statistics, 12(4), 1151–1172. https://doi.org/10.1214/aos/1176346785</unstructured_citation>
</citation>
<citation key="NRE">
<article_title>Towards reliable simulation-based inference with balanced neural ratio estimation</article_title>
<author>Delaunoy</author>
<cYear>2022</cYear>
<unstructured_citation>Delaunoy, A., Hermans, J., Rozet, F., Wehenkel, A., &amp; Louppe, G. (2022). Towards reliable simulation-based inference with balanced neural ratio estimation. https://arxiv.org/abs/2208.13624</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07606/10.21105.joss.07606.pdf
Binary file not shown.
Loading

0 comments on commit 87d128f

Please sign in to comment.