Skip to content

Commit

Permalink
Merge pull request #4927 from openjournals/joss.06073
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jan 19, 2024
2 parents 8cb1011 + ec76817 commit 3927a83
Show file tree
Hide file tree
Showing 4 changed files with 922 additions and 0 deletions.
340 changes: 340 additions & 0 deletions joss.06073/10.21105.joss.06073.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,340 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240119T081114-7947c19a1dc3a3acbd0deae8e7d096a765659caf</doi_batch_id>
<timestamp>20240119081114</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>93</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>CM++ - A Meta-method for Well-Connected Community
Detection</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Vikram</given_name>
<surname>Ramavarapu</surname>
<ORCID>https://orcid.org/0009-0001-8875-7213</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Fábio Jose</given_name>
<surname>Ayres</surname>
<ORCID>https://orcid.org/0009-0000-6821-4687</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Minhyuk</given_name>
<surname>Park</surname>
<ORCID>https://orcid.org/0000-0002-8676-7565</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Vidya Kamath</given_name>
<surname>Pailodi</surname>
<ORCID>https://orcid.org/0009-0000-0987-5901</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>João Alfredo Cardoso</given_name>
<surname>Lamy</surname>
<ORCID>https://orcid.org/0009-0005-4744-4754</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Tandy</given_name>
<surname>Warnow</surname>
<ORCID>https://orcid.org/0000-0001-7717-3514</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>George</given_name>
<surname>Chacko</surname>
<ORCID>https://orcid.org/0000-0002-2127-1892</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>19</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6073</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06073</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10501118</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6073</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06073</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06073</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06073.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Traag2019">
<article_title>From Louvain to Leiden: Guaranteeing
well-connected communities</article_title>
<author>Traag</author>
<journal_title>Scientific Reports</journal_title>
<issue>1</issue>
<volume>9</volume>
<doi>10.1038/s41598-019-41695-z</doi>
<issn>2045-2322</issn>
<cYear>2019</cYear>
<unstructured_citation>Traag, V. A., Waltman, L., &amp; van
Eck, N. J. (2019). From Louvain to Leiden: Guaranteeing well-connected
communities. Scientific Reports, 9(1), 5233.
https://doi.org/10.1038/s41598-019-41695-z</unstructured_citation>
</citation>
<citation key="10.1162/qss_a_00184">
<article_title>Center–periphery structure in research
communities</article_title>
<author>Wedell</author>
<journal_title>Quantitative Science Studies</journal_title>
<issue>1</issue>
<volume>3</volume>
<doi>10.1162/qss_a_00184</doi>
<issn>2641-3337</issn>
<cYear>2022</cYear>
<unstructured_citation>Wedell, E., Park, M., Korobskiy, D.,
Warnow, T., &amp; Chacko, G. (2022). Center–periphery structure in
research communities. Quantitative Science Studies, 3(1), 289–314.
https://doi.org/10.1162/qss_a_00184</unstructured_citation>
</citation>
<citation key="doi:10.1073/pnas.0706851105">
<article_title>Maps of random walks on complex networks
reveal community structure</article_title>
<author>Rosvall</author>
<journal_title>Proceedings of the National Academy of
Sciences</journal_title>
<issue>4</issue>
<volume>105</volume>
<doi>10.1073/pnas.0706851105</doi>
<cYear>2008</cYear>
<unstructured_citation>Rosvall, M., &amp; Bergstrom, C. T.
(2008). Maps of random walks on complex networks reveal community
structure. Proceedings of the National Academy of Sciences, 105(4),
1118–1123.
https://doi.org/10.1073/pnas.0706851105</unstructured_citation>
</citation>
<citation key="park2023wellconnected">
<article_title>Well-connected communities in real-world and
synthetic networks</article_title>
<author>Park</author>
<journal_title>Proceedings of COMPLEX networks
2023</journal_title>
<cYear>2023</cYear>
<unstructured_citation>Park, M., Tabatabaee, Y., Ramavarapu,
V., Liu, B., Pailodi, V. K., Ramachandran, R., Korobskiy, D., Ayres, F.,
Chacko, G., &amp; Warnow, T. (2023). Well-connected communities in
real-world and synthetic networks. Proceedings of COMPLEX Networks 2023.
https://arxiv.org/abs/2303.02813</unstructured_citation>
</citation>
<citation key="Fortunato2022">
<article_title>20 years of network community
detection</article_title>
<author>Fortunato</author>
<journal_title>Nature Physics</journal_title>
<issue>8</issue>
<volume>18</volume>
<doi>10.1038/s41567-022-01716-7</doi>
<issn>1745-2481</issn>
<cYear>2022</cYear>
<unstructured_citation>Fortunato, S., &amp; Newman, M. E. J.
(2022). 20 years of network community detection. Nature Physics, 18(8),
848–850.
https://doi.org/10.1038/s41567-022-01716-7</unstructured_citation>
</citation>
<citation key="BONCHI202134">
<article_title>Finding densest k-connected
subgraphs</article_title>
<author>Bonchi</author>
<journal_title>Discrete Applied Mathematics</journal_title>
<volume>305</volume>
<doi>10.1016/j.dam.2021.08.032</doi>
<issn>0166-218X</issn>
<cYear>2021</cYear>
<unstructured_citation>Bonchi, F., García-Soriano, D.,
Miyauchi, A., &amp; Tsourakakis, C. E. (2021). Finding densest
k-connected subgraphs. Discrete Applied Mathematics, 305, 34–47.
https://doi.org/10.1016/j.dam.2021.08.032</unstructured_citation>
</citation>
<citation key="https://doi.org/10.1002/asi.22748">
<article_title>A new methodology for constructing a
publication-level classification system of science</article_title>
<author>Waltman</author>
<journal_title>Journal of the American Society for
Information Science and Technology</journal_title>
<issue>12</issue>
<volume>63</volume>
<doi>10.1002/asi.22748</doi>
<cYear>2012</cYear>
<unstructured_citation>Waltman, L., &amp; van Eck, N. J.
(2012). A new methodology for constructing a publication-level
classification system of science. Journal of the American Society for
Information Science and Technology, 63(12), 2378–2392.
https://doi.org/10.1002/asi.22748</unstructured_citation>
</citation>
<citation key="Haggerty2013">
<article_title>A pluralistic account of homology: Adapting
the models to the data</article_title>
<author>Haggerty</author>
<journal_title>Molecular Biology and
Evolution</journal_title>
<issue>3</issue>
<volume>31</volume>
<doi>10.1093/molbev/mst228</doi>
<cYear>2013</cYear>
<unstructured_citation>Haggerty, L. S., Jachiet, P.-A.,
Hanage, W. P., Fitzpatrick, D. A., Lopez, P., O’Connell, M. J., Pisani,
D., Wilkinson, M., Bapteste, E., &amp; McInerney, J. O. (2013). A
pluralistic account of homology: Adapting the models to the data.
Molecular Biology and Evolution, 31(3), 501–516.
https://doi.org/10.1093/molbev/mst228</unstructured_citation>
</citation>
<citation key="https://doi.org/10.1002/sam.10133">
<article_title>A classification for community discovery
methods in complex networks</article_title>
<author>Coscia</author>
<journal_title>Statistical Analysis and Data Mining: The ASA
Data Science Journal</journal_title>
<issue>5</issue>
<volume>4</volume>
<doi>10.1002/sam.10133</doi>
<cYear>2011</cYear>
<unstructured_citation>Coscia, M., Giannotti, F., &amp;
Pedreschi, D. (2011). A classification for community discovery methods
in complex networks. Statistical Analysis and Data Mining: The ASA Data
Science Journal, 4(5), 512–546.
https://doi.org/10.1002/sam.10133</unstructured_citation>
</citation>
<citation key="snapnets">
<article_title>SNAP Datasets: Stanford large network dataset
collection</article_title>
<author>Leskovec</author>
<cYear>2014</cYear>
<unstructured_citation>Leskovec, J., &amp; Krevl, A. (2014).
SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data.</unstructured_citation>
</citation>
<citation key="henzinger2018practical">
<article_title>Practical minimum cut
algorithms</article_title>
<author>Henzinger</author>
<journal_title>ACM Journal of Experimental
Algorithmics</journal_title>
<volume>23</volume>
<cYear>2018</cYear>
<unstructured_citation>Henzinger, M., Noe, A., Schulz, C.,
&amp; Strash, D. (2018). Practical minimum cut algorithms. ACM Journal
of Experimental Algorithmics, 23.</unstructured_citation>
</citation>
<citation key="Karatas2018">
<article_title>Application areas of community detection: A
review</article_title>
<author>Karatas</author>
<journal_title>2018 international congress on big data, deep
learning and fighting cyber terrorism (IBIGDELFT)</journal_title>
<doi>10.1109/ibigdelft.2018.8625349</doi>
<cYear>2018</cYear>
<unstructured_citation>Karatas, A., &amp; Sahin, S. (2018,
December). Application areas of community detection: A review. 2018
International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT).
https://doi.org/10.1109/ibigdelft.2018.8625349</unstructured_citation>
</citation>
<citation key="https://doi.org/10.1002/wics.1566">
<article_title>Community detection in complex networks: From
statistical foundations to data science applications</article_title>
<author>Dey</author>
<journal_title>WIREs Computational
Statistics</journal_title>
<issue>2</issue>
<volume>14</volume>
<doi>10.1002/wics.1566</doi>
<cYear>2022</cYear>
<unstructured_citation>Dey, A. K., Tian, Y., &amp; Gel, Y.
R. (2022). Community detection in complex networks: From statistical
foundations to data science applications. WIREs Computational
Statistics, 14(2), e1566.
https://doi.org/10.1002/wics.1566</unstructured_citation>
</citation>
<citation key="vikram_ramavarapu_2024_10501118">
<article_title>CM++ - A Meta-method for Well-Connected
Community Detection</article_title>
<author>Ramavarapu</author>
<doi>10.5281/zenodo.10501118</doi>
<cYear>2024</cYear>
<unstructured_citation>Ramavarapu, V., Ayres, F. J., Park,
M., P, V. K., Lamy, J. A. C., Warnow, T., &amp; Chacko, G. (2024). CM++
- A Meta-method for Well-Connected Community Detection (Version v4.0.1).
Zenodo. https://doi.org/10.5281/zenodo.10501118</unstructured_citation>
</citation>
<citation key="doi:10.1137/040608635">
<article_title>Graph clustering via a discrete uncoupling
process</article_title>
<author>Van Dongen</author>
<journal_title>SIAM Journal on Matrix Analysis and
Applications</journal_title>
<issue>1</issue>
<volume>30</volume>
<doi>10.1137/040608635</doi>
<cYear>2008</cYear>
<unstructured_citation>Van Dongen, S. (2008). Graph
clustering via a discrete uncoupling process. SIAM Journal on Matrix
Analysis and Applications, 30(1), 121–141.
https://doi.org/10.1137/040608635</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 3927a83

Please sign in to comment.