Skip to content

Commit

Permalink
Merge pull request #5605 from openjournals/joss.06746
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jul 11, 2024
2 parents 2862597 + d28df54 commit 33217b7
Show file tree
Hide file tree
Showing 4 changed files with 882 additions and 0 deletions.
314 changes: 314 additions & 0 deletions joss.06746/10.21105.joss.06746.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,314 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240711170826-5c273f834c0c1053be5405f5c48ef5d2ef59c89f</doi_batch_id>
<timestamp>20240711170826</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>07</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>99</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>DSSE: An environment for simulation of reinforcement
learning-empowered drone swarm maritime search and rescue
missions</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Renato Laffranchi</given_name>
<surname>Falcão</surname>
<ORCID>https://orcid.org/0009-0001-5943-0481</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jorás Custódio Campos</given_name>
<surname>de Oliveira</surname>
<ORCID>https://orcid.org/0009-0005-1883-8703</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Pedro Henrique Britto Aragão</given_name>
<surname>Andrade</surname>
<ORCID>https://orcid.org/0009-0000-0056-4322</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ricardo Ribeiro</given_name>
<surname>Rodrigues</surname>
<ORCID>https://orcid.org/0009-0008-1237-3353</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Fabrício Jailson</given_name>
<surname>Barth</surname>
<ORCID>https://orcid.org/0000-0001-6263-121X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>José Fernando Basso</given_name>
<surname>Brancalion</surname>
<ORCID>https://orcid.org/0000-0002-4387-0204</ORCID>
</person_name>
</contributors>
<publication_date>
<month>07</month>
<day>11</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6746</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06746</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12668728</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6746</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06746</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06746</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06746.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="allianz">
<article_title>Safety and shipping review</article_title>
<cYear>2023</cYear>
<unstructured_citation>Safety and shipping review (p. 4).
(2023). Allianz Global Corporate &amp; Specialty.
https://commercial.allianz.com/news-and-insights/reports/shipping-safety.html</unstructured_citation>
</citation>
<citation key="who">
<article_title>Drowning</article_title>
<cYear>2023</cYear>
<unstructured_citation>Drowning. (2023). World Health
Organization.
https://www.who.int/news-room/fact-sheets/detail/drowning</unstructured_citation>
</citation>
<citation key="iamsar">
<article_title>Chapter 5. Search techniques and
operations</article_title>
<journal_title>International aeronautical and maritime
search and rescue manual</journal_title>
<volume>II</volume>
<isbn>9789280117356</isbn>
<cYear>2022</cYear>
<unstructured_citation>Chapter 5. Search techniques and
operations. (2022). In International aeronautical and maritime search
and rescue manual: Vol. II. International Maritime Organization;
International Civil Aviation Organization.
ISBN: 9789280117356</unstructured_citation>
</citation>
<citation key="trummel1986">
<article_title>The complexity of the optimal searcher path
problem</article_title>
<author>Trummel</author>
<journal_title>Operations Research</journal_title>
<issue>2</issue>
<volume>34</volume>
<cYear>1986</cYear>
<unstructured_citation>Trummel, K., &amp; Weisinger, J.
(1986). The complexity of the optimal searcher path problem. Operations
Research, 34(2), 324–327.</unstructured_citation>
</citation>
<citation key="terry2021pettingzoo">
<article_title>PettingZoo: Gym for multi-agent reinforcement
learning</article_title>
<author>Terry</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>34</volume>
<cYear>2021</cYear>
<unstructured_citation>Terry, J., Black, B., Grammel, N.,
Jayakumar, M., Hari, A., Sullivan, R., Santos, L. S., Dieffendahl, C.,
Horsch, C., Perez-Vicente, R., Williams, N., Lokesh, Y., &amp; Ravi, P.
(2021). PettingZoo: Gym for multi-agent reinforcement learning. In M.
Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, &amp; J. W. Vaughan
(Eds.), Advances in neural information processing systems (Vol. 34, pp.
15032–15043). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf</unstructured_citation>
</citation>
<citation key="Terry_PettingZoo_Gym_for">
<article_title>PettingZoo: Gym for multi-agent reinforcement
learning</article_title>
<author>Terry</author>
<cYear>2021</cYear>
<unstructured_citation>Terry, J., Black, B., Grammel, N.,
Jayakumar, M., Hari, A., Sullivan, R., Santos, L., Perez, R., Horsch,
C., Dieffendahl, C., Williams, N., &amp; Lokesh, Y. (2021). PettingZoo:
Gym for multi-agent reinforcement learning.
https://github.com/Farama-Foundation/PettingZoo</unstructured_citation>
</citation>
<citation key="AI2021110098">
<article_title>Coverage path planning for maritime search
and rescue using reinforcement learning</article_title>
<author>Ai</author>
<journal_title>Ocean Engineering</journal_title>
<volume>241</volume>
<doi>10.1016/j.oceaneng.2021.110098</doi>
<issn>0029-8018</issn>
<cYear>2021</cYear>
<unstructured_citation>Ai, B., Jia, M., Xu, H., Xu, J., Wen,
Z., Li, B., &amp; Zhang, D. (2021). Coverage path planning for maritime
search and rescue using reinforcement learning. Ocean Engineering, 241,
110098.
https://doi.org/10.1016/j.oceaneng.2021.110098</unstructured_citation>
</citation>
<citation key="WU2024116403">
<article_title>An autonomous coverage path planning
algorithm for maritime search and rescue of persons-in-water based on
deep reinforcement learning</article_title>
<author>Wu</author>
<journal_title>Ocean Engineering</journal_title>
<volume>291</volume>
<doi>10.1016/j.oceaneng.2023.116403</doi>
<issn>0029-8018</issn>
<cYear>2024</cYear>
<unstructured_citation>Wu, J., Cheng, L., Chu, S., &amp;
Song, Y. (2024). An autonomous coverage path planning algorithm for
maritime search and rescue of persons-in-water based on deep
reinforcement learning. Ocean Engineering, 291, 116403.
https://doi.org/10.1016/j.oceaneng.2023.116403</unstructured_citation>
</citation>
<citation key="SILVER2021103535">
<article_title>Reward is enough</article_title>
<author>Silver</author>
<journal_title>Artificial Intelligence</journal_title>
<volume>299</volume>
<doi>10.1016/j.artint.2021.103535</doi>
<issn>0004-3702</issn>
<cYear>2021</cYear>
<unstructured_citation>Silver, D., Singh, S., Precup, D.,
&amp; Sutton, R. S. (2021). Reward is enough. Artificial Intelligence,
299, 103535.
https://doi.org/10.1016/j.artint.2021.103535</unstructured_citation>
</citation>
<citation key="gmd-11-1405-2018">
<article_title>OpenDrift v1.0: A generic framework for
trajectory modelling</article_title>
<author>Dagestad</author>
<journal_title>Geoscientific Model
Development</journal_title>
<issue>4</issue>
<volume>11</volume>
<doi>10.5194/gmd-11-1405-2018</doi>
<cYear>2018</cYear>
<unstructured_citation>Dagestad, K.-F., Röhrs, J., Breivik,
Ø., &amp; Ådlandsvik, B. (2018). OpenDrift v1.0: A generic framework for
trajectory modelling. Geoscientific Model Development, 11(4), 1405–1420.
https://doi.org/10.5194/gmd-11-1405-2018</unstructured_citation>
</citation>
<citation key="dsse2023">
<article_title>Exploration and rescue of shipwreck survivors
using reinforcement learning-empowered drone swarms</article_title>
<author>Abreu</author>
<issn>1983-7402</issn>
<cYear>2023</cYear>
<unstructured_citation>Abreu, L. D. M. de, Carrete, L. F.
S., Castanares, M., Damiani, E. F., Brancalion, J. F. B., &amp; Barth,
F. J. (2023). Exploration and rescue of shipwreck survivors using
reinforcement learning-empowered drone swarms (pp. 64–69). Simpósio de
Aplicações Operacionais em Áreas de Defesa
(SIGE).</unstructured_citation>
</citation>
<citation key="algorithmsDSSE2024">
<article_title>Algorithms for drone swarm search
(DSSE)</article_title>
<author>Rodrigues</author>
<cYear>2024</cYear>
<unstructured_citation>Rodrigues, R. R., Oliveira, J. C. C.
de, Andrade, P. H. B. A., &amp; Falcão, R. L. (2024). Algorithms for
drone swarm search (DSSE).
https://github.com/pfeinsper/drone-swarm-search-algorithms</unstructured_citation>
</citation>
<citation key="dqn2015">
<article_title>Human-level control through deep
reinforcement learning</article_title>
<author>Mnih</author>
<journal_title>Nature</journal_title>
<issue>7540</issue>
<volume>518</volume>
<doi>10.1038/nature14236</doi>
<cYear>2015</cYear>
<unstructured_citation>Mnih, V., Kavukcuoglu, K., Silver,
D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., &amp;
Hassabis, D. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540), 529–533.
https://doi.org/10.1038/nature14236</unstructured_citation>
</citation>
<citation key="ppo2017">
<article_title>Proximal policy optimization
algorithms</article_title>
<author>Schulman</author>
<doi>10.48550/arXiv.1707.06347</doi>
<cYear>2017</cYear>
<unstructured_citation>Schulman, J., Wolski, F., Dhariwal,
P., Radford, A., &amp; Klimov, O. (2017). Proximal policy optimization
algorithms.
https://doi.org/10.48550/arXiv.1707.06347</unstructured_citation>
</citation>
<citation key="WU2023113444">
<article_title>Modeling the leeway drift characteristics of
persons-in-water at a sea-area scale in the seas of
china</article_title>
<author>Wu</author>
<journal_title>Ocean Engineering</journal_title>
<volume>270</volume>
<doi>10.1016/j.oceaneng.2022.113444</doi>
<issn>0029-8018</issn>
<cYear>2023</cYear>
<unstructured_citation>Wu, J., Cheng, L., &amp; Chu, S.
(2023). Modeling the leeway drift characteristics of persons-in-water at
a sea-area scale in the seas of china. Ocean Engineering, 270, 113444.
https://doi.org/10.1016/j.oceaneng.2022.113444</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06746/10.21105.joss.06746.pdf
Binary file not shown.
Loading

0 comments on commit 33217b7

Please sign in to comment.