Ondrej Sika (sika.io) | [email protected] | course -> | install ->
Source of my Prometheus Training
Write me mail to [email protected]
DevOps Engineer, Consultant & Lecturer
Git, Gitlab, Gitlab CI, Docker, Kubernetes, Terraform, Prometheus, ELK / EFK
Feel free to star this repository or fork it.
If you found bug, create issue or pull request.
Also feel free to propose improvements by creating issues.
For sharing links & "secrets".
- Campfire - https://sika.link/join-campfire
- Slack - https://sikapublic.slack.com/
- Microsoft Teams
- https://sika.link/chat (tlk.io)
brew install sikalabs/tap/slu
brew install prometheus
brew install thanos
sudo slu install-bin alertmanager
Install slu
curl -fsSL https://raw.githubusercontent.com/sikalabs/slu/master/install.sh | sudo sh
Install tools
sudo slu install-bin prometheus
sudo slu install-bin alertmanager
sudo slu install-bin thanos
- Prometheus
- Intro
- Install Prometheus
- Basic configuration
- Scraping & Exporters
- Push Gateway
- PromQL
- Alerting
- Alert Manager
- Install Alert Manager
- Routes
- Receivers
- Grafana
- Instal Grafana
- Working with dashboards
- Prometheus integration
Prometheus is an open-source systems monitoring and alerting toolkit originally built at SoundCloud. Since its inception in 2012, many companies and organizations have adopted Prometheus, and the project has a very active developer and user community. It is now a standalone open source project and maintained independently of any company. To emphasize this, and to clarify the project's governance structure, Prometheus joined the Cloud Native Computing Foundation in 2016 as the second hosted project, after Kubernetes. -- Prometheus website
- time series DB
- PromQL - a flexible query language
- metrics scraping
- support for push metrics (Push Gateway)
- service discovery & static config
- many exporters
- alert manager
- Counter
- Gauge
- Histogram
- Summary
A counter is a cumulative metric that represents a single monotonically increasing counter whose value can only increase or be reset to zero on restart. For example, you can use a counter to represent the number of requests served, tasks completed, or errors.
A gauge is a metric that represents a single numerical value that can arbitrarily go up and down.
Gauges are typically used for measured values like temperatures or current memory usage, but also "counts" that can go up and down, like the number of concurrent requests.
A histogram samples observations (usually things like request durations or response sizes) and counts them in configurable buckets. It also provides a sum of all observed values.
A histogram with a base metric name of <basename>
exposes multiple time series during a scrape:
- cumulative counters for the observation buckets, exposed as
<basename>_bucket{le="<upper inclusive bound>"}
- the total sum of all observed values, exposed as
<basename>_sum
- the count of events that have been observed, exposed as
<basename>_count (identical to <basename>_bucket{le="+Inf"}
above)
Similar to a histogram, a summary samples observations (usually things like request durations and response sizes). While it also provides a total count of observations and a sum of all observed values, it calculates configurable quantiles over a sliding time window.
A summary with a base metric name of <basename>
exposes multiple time series during a scrape:
- streaming φ-quantiles (0 ≤ φ ≤ 1) of observed events, exposed as
<basename>{quantile="<φ>"}
- the total sum of all observed values, exposed as
<basename>_sum
- the count of events that have been observed, exposed as
<basename>_count
Run
prometheus --config.file=examples/prom-self-monitor.yml
or
./run-prometheus.sh examples/prom-self-monitor.yml
Examples:
slu metrics-generator server
slu metrics-generator server -p 8001
slu metrics-generator server -p 8002
or in Docker
docker run --name metgen0 -d -p 8000:8000 sikalabs/slu:v0.80.0 slu metrics-generator server
docker run --name metgen1 -d -p 8001:8000 sikalabs/slu:v0.80.0 slu metrics-generator server
docker run --name metgen2 -d -p 8002:8000 sikalabs/slu:v0.80.0 slu metrics-generator server
Run Prometheus with those sample targets
prometheus --config.file=examples/prom-basic.yml
or
./run-prometheus.sh examples/prom-basic.yml
See:
- http://127.0.0.1:9090
- http://127.0.0.1:9090/graph?g0.expr=sum(rate(example_request_duration_seconds_count%5B1m%5D))%20by%20(instance)&g0.tab=1&g0.stacked=0&g0.show_exemplars=0&g0.range_input=1h
In Prometheus, targets are endpoints that expose metrics that Prometheus can scrape. Targets are typically applications or services that provide these metrics so that Prometheus can collect and store them for monitoring and alerting purposes.
See: http://localhost:9090/targets
There are a number of libraries and servers which help in exporting existing metrics from third-party systems as Prometheus metrics. This is useful for cases where it is not feasible to instrument a given system with Prometheus metrics directly (for example, HAProxy or Linux system stats).
- Node Exporter (official) - https://github.com/prometheus/node_exporter
- Blackbox Exporter (official) - https://github.com/prometheus/blackbox_exporter
- cAdvisor (Docker) - https://github.com/google/cadvisor
- Kube State Metrics - https://github.com/kubernetes/kube-state-metrics
- MySQL Exporter (official) - https://github.com/prometheus/mysqld_exporter
- Postgres Exporter - https://github.com/wrouesnel/postgres_exporter
All exporters are on Prometheus website: https://prometheus.io/docs/instrumenting/exporters/ Defult ports of exporters: https://github.com/prometheus/prometheus/wiki/Default-port-allocations
Install on host using Docker:
docker run --name node-exporter -d --net=host --pid=host -v /:/host:ro,rslave quay.io/prometheus/node-exporter --path.rootfs=/host
See: http://prom.sikademo.com:9100/metrics
Example for Mac (without rootfs and host network)
docker run --name node-exporter -d -p 9100:9100 --pid=host quay.io/prometheus/node-exporter
Run Prometheus with node_exporter scrape config:
prometheus --config.file=examples/prom-node-exporter.yml
or
./run-prometheus.sh examples/prom-node-exporter.yml
Install on host using Docker:
docker run --rm -d -p 9115:9115 --name blackbox_exporter -v $(pwd)/examples/blackbox_exporter:/etc/blackbox_exporter prom/blackbox-exporter:master
See: http://prom.sikademo.com:9115/metrics
Check status code 200 on website:
- sika.io: http://prom.sikademo.com:9115/probe?module=http_2xx&target=https://sika.io
- foo.int (not working): http://prom.sikademo.com:9115/probe?module=http_2xx&target=https://foo.int
Run Prometheus with balackbox_exporter config:
prometheus --config.file=examples/prom-blackbox.yml
or
./run-prometheus.sh examples/prom-blackbox.yml
Install on host using Docker:
docker run --volume=/:/rootfs:ro --volume=/var/run:/var/run:ro --volume=/sys:/sys:ro --volume=/var/lib/docker/:/var/lib/docker:ro --volume=/dev/disk/:/dev/disk:ro --publish=9338:9338 --detach=true --name=cadvisor gcr.io/cadvisor/cadvisor --port=9338
See:
- Metrics: http://prom.sikademo.com:9338/metrics
- Dashboard: http://prom.sikademo.com:9338/
- http://prom.sikademo.com:9090/
- http://prom.sikademo.com:9090/targets
- http://prom.sikademo.com:9090/graph?g0.expr=node_load1&g0.tab=0&g0.stacked=0&g0.range_input=1h
Select time series
node_network_receive_bytes_total
{__name__="node_network_receive_bytes_total"}
node_network_receive_bytes_total / {__name__="node_network_receive_bytes_total"}
Select time series by label
node_network_receive_bytes_total{device="eth0"}
node_network_receive_bytes_total{device!="lo"}
Regular Expressions
node_network_receive_bytes_total{device=~"eth.+"}
node_network_receive_bytes_total{device!~"eth.+"}
node_network_receive_bytes_total{device=~"eth0|lo"}
{__name__=~"node_network_(receive|transmit)_bytes_total"}
Offset
node_network_receive_bytes_total offset 1h
Rates
rate(node_network_receive_bytes_total[5m])
rate
vs irate
rate()
is generally used when graphing the slow moving counters.irate()
is used when graphing the high volatile counters.
Source: https://medium.com/@kavyaprathyusha/rate-vs-irate-in-promql-a172e3d9c38f
CPU usage in percent
100 * (1 - avg(rate(node_cpu_seconds_total{mode="idle"}[1m])) by (instance))
Memory usage in percent
100 * (node_memory_Active_bytes / on (instance) node_memory_MemTotal_bytes)
Disk Usage in Percent
100 * (node_filesystem_avail_bytes{fstype!~"tmpfs|fuse.lxcfs|squashfs|vfat"} / node_filesystem_size_bytes{fstype!~"tmpfs|fuse.lxcfs|squashfs|vfat"})
Network transmit in kbps
sum(rate(node_network_transmit_bytes_total{device=~"eth.*|enp.*"}[10m])) by (instance)
CPU Count
count without(cpu, mode) (node_cpu_seconds_total{mode="idle"})
predict_linear
is a function to forecast future values of a time series based on its existing data points. It helps in estimating what the value of a given metric might be at a future time based on its trend over a specified period.
Start filling the disk
slu w -s 1000 -- slu generate-files tree -c 10 -p .
and see the prediction
100 * (1 - (predict_linear(node_filesystem_avail_bytes{mountpoint="/"}[1m], 3600) / node_filesystem_size_bytes{mountpoint="/"}))
predict_linear(node_filesystem_avail_bytes{mountpoint="/"}[1m], 60*60)
prometheus --config.file=examples/prom-queries.yml
or
./run-prometheus.sh examples/prom-queries.yml
prometheus --config.file=examples/prom-sd-dns.yml
or
./run-prometheus.sh examples/prom-sd-dns.yml
Copy examples/service-discovery-file.example.yml
to examples/service-discovery-file.yml
cp examples/service-discovery-file.example.yml examples/service-discovery-file.yml
prometheus --config.file=examples/prom-sd-file.yml
or
./run-prometheus.sh examples/prom-sd-file.yml
prometheus --config.file=examples/prom-sd-consul.yml
or
./run-prometheus.sh examples/prom-sd-consul.yml
Install Push Gateway using Docker:
docker run --name push-gateway -d -p 9091:9091 prom/pushgateway
See:
- Web UI: http://prom.sikademo.com:9091/
- Metrics: http://prom.sikademo.com:9091/metrics
Push with label {job="some_job"}
echo "demo 3.14" | curl --data-binary @- http://prom.sikademo.com:9091/metrics/job/some_job
Push with label {job="other_job",instance="some_instance"}
cat <<EOF | curl --data-binary @- http://prom.sikademo.com:9091/metrics/job/some_job/instance/some_instance
# TYPE some_metric counter
some_metric{label="val1"} 42
# TYPE another_metric gauge
# HELP another_metric Just an example.
another_metric 2398.283
EOF
Delete metrics from Push Gateway:
curl -X DELETE http://prom.sikademo.com:9091/metrics/job/some_job
curl -X DELETE http://prom.sikademo.com:9091/metrics/job/some_job/instance/some_instance
We'll use maildev on maildev.sikademo.com
Run Random Metrics:
docker run --name random8080 -d -p 8080:80 ondrejsika/random-metrics
docker run --name random8081 -d -p 8081:80 ondrejsika/random-metrics
docker run --name random8082 -d -p 8082:80 ondrejsika/random-metrics
Run Prometheus with rules configuration
prometheus --config.file=examples/prom-alert.yml
See: http://localhost:9090/alerts
and in other tab run Alertmanager
alertmanager --config.file examples/am-basic.yml
Stop random metrics:
docker stop random8080 random8081 random8082
See Alerts, Alertmanager and Emaildev. Start them and check again:
docker start random8080 random8081 random8082
Use ./set-probe_success.sh
script to set everything up
./set-probe_success.sh frontend 1
./set-probe_success.sh backend 1
./set-probe_success.sh db 1
./set-probe_success.sh lb 1
Run Prometheus & Alertmanager:
prometheus --config.file=examples/prometheus.yml
alertmanager --config.file examples/alertmanager.yml
You can debug routes here: https://prometheus.io/webtools/alerting/routing-tree-editor/
Check Alerts & Alert Manager.
Fire some errors:
./set-probe_success.sh db 0
./set-probe_success.sh lb 0
Check Alerts, Alert Manager & MailDev.
Fix DB & LB and see Alerts, Alert Manager & MailDev again.
./set-probe_success.sh db 1
./set-probe_success.sh lb 1
Send alert to Jira
https://github.com/prometheus-community/jiralert
All dashboards are on: https://grafana.com/grafana/dashboards
My favourite dashboards:
- Node Exporter -
405
- https://grafana.com/grafana/dashboards/405 - Node Exporter -
11074
- https://grafana.com/grafana/dashboards/11074 - Postgres -
455
- https://grafana.com/grafana/dashboards/455 - Mysql -
6239
- https://grafana.com/grafana/dashboards/6239 - Traefik -
5851
- https://grafana.com/grafana/dashboards/5851 - Proxmox -
10347
- https://grafana.com/grafana/dashboards/10347 - Consul -
10642
- https://grafana.com/grafana/dashboards/10642
Kubernetes
- K8 Cluster Detail Dashboard -
10856
- https://grafana.com/grafana/dashboards/10856 - 10 Project/NameSpace Based on Memory -
10551
- https://grafana.com/grafana/dashboards/10551 - Cluster Monitoring for Kubernetes -
10000
- https://grafana.com/grafana/dashboards/10000
helm upgrade --install loki loki \
--repo https://grafana.github.io/helm-charts \
--namespace loki \
--create-namespace \
--values examples/loki/loki.values.yml
If you don't have Grafana, you can install it.
helm upgrade --install grafana grafana \
--repo https://grafana.github.io/helm-charts \
--namespace grafana \
--create-namespace \
--values examples/loki/grafana.values.yml
helm upgrade --install promtail promtail \
--repo https://grafana.github.io/helm-charts \
--namespace promtail \
--create-namespace \
--values examples/loki/promtail.values.yml
Run some demo logging
kubectl apply -f examples/loki/loggen.yml -f examples/loki/loggen-fast.yml -f examples/loki/loggen-slow.yml -f examples/loki/loggen-json.yml
Add Loki data source http://loki-read.loki:3100
Queries
{app="loggen"}
{app=~"loggen.*"} | line_format "{{ .node_name }} {{ .app }}"
{app=~"loggen.*"} |= "ERROR"
{app=~"loggen.*"} != "DEBUG"
{app=~"loggen.*"} != "DEBUG" != "INFO"
{app=~"loggen.*"} !~ "DEBUG|INFO"
{app=~"loggen.*"} | pattern `<_> <_> <_> <level> <message>` | line_format "{{ .app }} -- {{ .level }} -- {{ .message }}"
{app="json-loggen"}
{app="json-loggen"} | json
{app="json-loggen"} | json | line_format "{{ .app }} -- {{ .level }} -- {{ .message }}"
logctl
kubectl port-forward -n loki svc/loki-read 3100:3100
export LOKI_ADDR=http://127.0.0.1:3100
logcli query '{app="loggen-slow"} | pattern `<_> <_> <_> <level> <msg>` | line_format "{{ .app }} -- {{.level}} -- {{.msg}}"'
cd examples/thanos
Run multiple Prometheuses (in US & EU zone)
./run-prom-us.sh
./run-prom-eu.sh
Run sidecars for those Prometheuses
./run-thanos-sidecar-us.sh
./run-thanos-sidecar-eu.sh
Run Prometheus Query connected to sidecars
./run-thanos-query-sidecar.sh
Run Thanos Store for each sidecar data
./run-thanos-store-us.sh
./run-thanos-store-eu.sh
Run Prometheus Query connected to stores
./run-thanos-query-store.sh
That's it. Do you have any questions? Let's go for a beer!
- email: [email protected]
- web: https://sika.io
- twitter: @ondrejsika
- linkedin: /in/ondrejsika/
- Newsletter, Slack, Facebook & Linkedin Groups: https://join.sika.io
Do you like the course? Write me recommendation on Twitter (with handle @ondrejsika
) and LinkedIn (add me /in/ondrejsika and I'll send you request for recommendation). Thanks.
Wanna to go for a beer or do some work together? Just book me :)
- Prometheus vs Others - https://prometheus.io/docs/introduction/comparison/