Skip to content

omkaar718/OOD-Magnets

Repository files navigation

Screenshot_20221221_100103

Training

(1) Stage 1: Supervised Contrastive Training

Please refer this repository for PyTorch implementation of Supervised Contrastive Learning paper.

(2) Stage 2: Virtual Outlier Synthesis

Following the paper and the repository, we generate virtual outliers. To synthesize a new set of virtual outliers, use --generate_ood while running the train script.

(3) Stage 3: OOD Score Optimization

python train_virtual.py --epochs 20
  --learning_rate 0.1
  --batch_size 128
  --momentum 0.9
  --save 0.9 Folder_to_save_checkpoints
  --generate_ood # to generate a new set of virtual outliers
  --generate_centroids  # find ID class centroids

(4) Stage 4: ID Classification Head Training

python stage4_ID_classifier.py --train

Testing

(1) OOD Classification

To run the results for FPR95, AUROC and AUPR please run:

        python test.py --cifar_root <root path of the cifar dataset> (required)
                       --weights_path <path to weight of the model> (required)
                       --centroids_path <path to the centroids file> (required)
                       --batch_size <batch size of test batches>
                       --lsun_root <path to root directory of lsun dataset>
                       --places365_root <path to root directory of places dataset>
                       --isun_root <path to root directory of isun dataset>
                       --dtd_root <path to root directory of dtd dataset>
                       --svhn_root <path to root directory of svhn dataset>

For faster results it is better to run the script once per OOD dataset i.e with only one of the OOD datset path arguments at a time.

(2) ID Classification To use the model as a classifier for ID data:

python stage4_ID_classifier.py --test

Visualization

python visualize_embeddings.py

Ensure we have the datasets for Textures (DTD), SVHN, iSUN, LSUN and Places 365 for testing and visualization.

The pretrained models and PyTorch objects are present in drive.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •