Skip to content

Demo code for creating WordVector models through connecting DeepLearning4J with Postgres on the Reuters-21578 dataset

License

Notifications You must be signed in to change notification settings

nzv8fan/reutersDbWvDemo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

reutersDbWvDemo

Demo code for creating WordVector models through connecting DeepLearning4J with Postgres on the Reuters-21578 dataset

The purpose of this code is to primarily show how DeepLearning4J can train a WordVector model from data contained in a common RDBMS database rather than flat files or a distributed database system.

Additionally, the code shows a custom pre-processor and custom iterators over the database ResultSet object.

If you don't have text in a database then create some:

  1. Download the SGM files: ./downloadReutersSGM.sh

  2. Setup the Database:

  • Copy the code from setupDbTable.sql into your database server
  • Optional: Change the pom.xml file if you are using something other than postgres as your database
  1. Build the project: mvn package

  2. Extract the SGM files into the DB - this creates 21,788 rows in the table

java -cp target/reutersDbWvDemo-1.0-SNAPSHOT.jar au.edu.unsw.cse.ExtractSGM 'jdbc:postgresql://server.domain:port/database?user=username&password=password' reuters21578sgm/ <jdbcClassName>

Construct the Word Vector model from the DB

java -cp target/reutersDbWvDemo-1.0-SNAPSHOT.jar au.edu.unsw.cse.BuildWordVectorsFromDatabase 'jdbc:postgresql://server.domain:port/database?user=username&password=password' <iterations> <layer size> <output filename> <sql query> <sql column name> <jdbcClassName>

Test the Word Vector Model

java -cp target/reutersDbWvDemo-1.0-SNAPSHOT.jar au.edu.unsw.cse.WordVectorChecker

About

Demo code for creating WordVector models through connecting DeepLearning4J with Postgres on the Reuters-21578 dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published