Skip to content
/ GEN3C Public

[CVPR 2025] GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control

Notifications You must be signed in to change notification settings

nv-tlabs/GEN3C

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 

Repository files navigation

GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control

GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control
Xuanchi Ren*, Tianchang Shen* Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas Müller, Alexander Keller, Sanja Fidler, Jun Gao
* indicates equal contribution
Paper, Project Page

Abstract: We present GEN3C, a generative video model with precise Camera Control and temporal 3D Consistency. Prior video models already generate realistic videos, but they tend to leverage little 3D information, leading to inconsistencies, such as objects popping in and out of existence. Camera control, if implemented at all, is imprecise, because camera parameters are mere inputs to the neural network which must then infer how the video depends on the camera. In contrast, GEN3C is guided by a 3D cache: point clouds obtained by predicting the pixel-wise depth of seed images or previously generated frames. When generating the next frames, GEN3C is conditioned on the 2D renderings of the 3D cache with the new camera trajectory provided by the user. Crucially, this means that GEN3C neither has to remember what it previously generated nor does it have to infer the image structure from the camera pose. The model, instead, can focus all its generative power on previously unobserved regions, as well as advancing the scene state to the next frame. Our results demonstrate more precise camera control than prior work, as well as state-of-the-art results in sparse-view novel view synthesis, even in challenging settings such as driving scenes and monocular dynamic video. Results are best viewed in videos.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing. For any other questions related to the model, please contact Xuanchi, Tianchang or Jun.

Installation

🚧 ⛏️ 🛠️ 👷

Under construction. Stay tuned!

Gallery

  • GEN3C can be easily applied to video/scene creation from a single image
  • ... or sparse-view images (we use 5 images here)
  • .. and dynamic videos

Acknowledgement

Our model is based on NVIDIA Cosmos and Stable Video Diffusion.

Citation

 @inproceedings{ren2025gen3c,
    title={GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control},
    author={Ren, Xuanchi and Shen, Tianchang and Huang, Jiahui and Ling, Huan and 
        Lu, Yifan and Nimier-David, Merlin and Müller, Thomas and Keller, Alexander and 
        Fidler, Sanja and Gao, Jun},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year={2025}
}

About

[CVPR 2025] GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published