Skip to content

Commit

Permalink
explicitly set num_workers=0 in examples
Browse files Browse the repository at this point in the history
  • Loading branch information
nmichlo committed Aug 5, 2022
1 parent a51972d commit e70867c
Show file tree
Hide file tree
Showing 10 changed files with 18 additions and 18 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -333,11 +333,11 @@ from disent.schedule import CyclicSchedule

# create the dataset & dataloaders
# - ToImgTensorF32 transforms images from numpy arrays to tensors and performs checks
# - if you use `num_workers` in the DataLoader, the make sure to wrap `trainer.fit`
# with `if __name__ == '__main__': ...`
# - if you use `num_workers != 0` in the DataLoader, the make sure to
# wrap `trainer.fit` with `if __name__ == '__main__': ...`
data = XYObjectData()
dataset = DisentDataset(dataset=data, sampler=SingleSampler(), transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=128, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=128, shuffle=True, num_workers=0)

# create the BetaVAE model
# - adjusting the beta, learning rate, and representation size.
Expand Down
8 changes: 4 additions & 4 deletions docs/examples/mnist_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,10 @@ def __getitem__(self, index):
dataset_test = MNIST(data_folder, train=False, download=True, transform=ToImgTensorF32())

# create the dataloaders
# - if you use `num_workers` in the DataLoader, the make sure to wrap `trainer.fit`
# with `if __name__ == '__main__': ...`
dataloader_train = DataLoader(dataset=dataset_train, batch_size=128, shuffle=True)
dataloader_test = DataLoader(dataset=dataset_test, batch_size=128, shuffle=True)
# - if you use `num_workers != 0` in the DataLoader, the make sure to
# wrap `trainer.fit` with `if __name__ == '__main__': ...`
dataloader_train = DataLoader(dataset=dataset_train, batch_size=128, shuffle=True, num_workers=0)
dataloader_test = DataLoader(dataset=dataset_test, batch_size=128, shuffle=True, num_workers=0)

# create the model
module = AdaVae(
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/overview_dataset_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
# prepare the data
data = XYObjectData(grid_size=4, min_square_size=1, max_square_size=2, square_size_spacing=1, palette='rgb_1')
dataset = DisentDataset(data, sampler=GroundTruthPairOrigSampler(), transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=0)

# iterate over single epoch
for batch in dataloader:
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/overview_framework_adagvae.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# prepare the data
data = XYObjectData()
dataset = DisentDataset(data, GroundTruthPairOrigSampler(), transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=0)

# create the pytorch lightning system
module: pl.LightningModule = AdaVae(
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/overview_framework_ae.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# prepare the data
data = XYObjectData()
dataset = DisentDataset(data, transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=0)

# create the pytorch lightning system
module: pl.LightningModule = Ae(
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/overview_framework_betavae.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# prepare the data
data = XYObjectData()
dataset = DisentDataset(data, transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=0)

# create the pytorch lightning system
module: pl.LightningModule = BetaVae(
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/overview_framework_betavae_scheduled.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# prepare the data
data = XYObjectData()
dataset = DisentDataset(data, transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=0)

# create the pytorch lightning system
module: pl.LightningModule = BetaVae(
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/overview_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@

data = XYObjectData()
dataset = DisentDataset(data, transform=ToImgTensorF32(), augment=None)
dataloader = DataLoader(dataset=dataset, batch_size=32, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0)

def make_vae(beta):
return BetaVae(
Expand Down
6 changes: 3 additions & 3 deletions docs/examples/readme_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,11 @@

# create the dataset & dataloaders
# - ToImgTensorF32 transforms images from numpy arrays to tensors and performs checks
# - if you use `num_workers` in the DataLoader, the make sure to wrap `trainer.fit`
# with `if __name__ == '__main__': ...`
# - if you use `num_workers != 0` in the DataLoader, the make sure to
# wrap `trainer.fit` with `if __name__ == '__main__': ...`
data = XYObjectData()
dataset = DisentDataset(dataset=data, sampler=SingleSampler(), transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=128, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=128, shuffle=True, num_workers=0)

# create the BetaVAE model
# - adjusting the beta, learning rate, and representation size.
Expand Down
4 changes: 2 additions & 2 deletions tests/test_frameworks.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def test_frameworks(Framework, cfg_kwargs, Data):

data = XYObjectData() if (Data is None) else Data()
dataset = DisentDataset(data, DataSampler(), transform=ToImgTensorF32())
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True)
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=0)

framework = Framework(
model=AutoEncoder(
Expand Down Expand Up @@ -176,7 +176,7 @@ def test_ada_vae_similarity():

data = XYObjectData()
dataset = DisentDataset(data, sampler=RandomSampler(num_samples=2), transform=ToImgTensorF32())
dataloader = DataLoader(dataset, num_workers=0, batch_size=3)
dataloader = DataLoader(dataset, batch_size=3, num_workers=0)

model = AutoEncoder(
encoder=EncoderLinear(x_shape=data.x_shape, z_size=25, z_multiplier=2),
Expand Down

0 comments on commit e70867c

Please sign in to comment.