Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix xarray FutureWarning about dims vs sizes #297

Merged
merged 3 commits into from
Sep 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions tests/test_unit/test_filtering.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,8 +83,8 @@ def test_interpolate_over_time_on_position(

# The number of NaNs after interpolating should be as expected
assert n_nans_after == (
valid_dataset_in_frames.dims["space"]
* valid_dataset_in_frames.dims.get("keypoints", 1)
valid_dataset_in_frames.sizes["space"]
* valid_dataset_in_frames.sizes.get("keypoints", 1)
# in bboxes dataset there is no keypoints dimension
* expected_n_nans_in_position
)
Expand Down Expand Up @@ -120,7 +120,7 @@ def test_filter_by_confidence_on_position(
# the number of low confidence keypoints by the number of
# space dimensions
assert isinstance(position_filtered, xr.DataArray)
assert n_nans == valid_input_dataset.dims["space"] * n_low_confidence_kpts
assert n_nans == valid_input_dataset.sizes["space"] * n_low_confidence_kpts


@pytest.mark.parametrize(
Expand Down Expand Up @@ -198,15 +198,15 @@ def _assert_n_nans_in_position_per_individual(
# compute n nans in position after filtering per individual
n_nans_after_filtering_per_indiv = {
i: helpers.count_nans(position_filtered.isel(individuals=i))
for i in range(valid_input_dataset.dims["individuals"])
for i in range(valid_input_dataset.sizes["individuals"])
}

# check number of nans per indiv is as expected
for i in range(valid_input_dataset.dims["individuals"]):
for i in range(valid_input_dataset.sizes["individuals"]):
assert n_nans_after_filtering_per_indiv[i] == (
expected_nans_in_filt_position_per_indiv[i]
* valid_input_dataset.dims["space"]
* valid_input_dataset.dims.get("keypoints", 1)
* valid_input_dataset.sizes["space"]
* valid_input_dataset.sizes.get("keypoints", 1)
)

# Filter position
Expand Down
6 changes: 3 additions & 3 deletions tests/test_unit/test_kinematics.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,14 +128,14 @@ def test_kinematics_with_dataset_with_nans(
# compute n nans in kinematic array per individual
n_nans_kinematics_per_indiv = [
helpers.count_nans(kinematic_array.isel(individuals=i))
for i in range(valid_dataset.dims["individuals"])
for i in range(valid_dataset.sizes["individuals"])
]

# expected nans per individual adjusted for space and keypoints dimensions
expected_nans_adjusted = [
n
* valid_dataset.dims["space"]
* valid_dataset.dims.get("keypoints", 1)
* valid_dataset.sizes["space"]
* valid_dataset.sizes.get("keypoints", 1)
for n in expected_nans_per_individual
]
# check number of nans per individual is as expected in kinematic array
Expand Down
Loading