-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add plot to reindexing example and rename
- Loading branch information
Showing
2 changed files
with
220 additions
and
77 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
"""Reindex and interpolate bounding boxes tracks | ||
=============================== | ||
Load an example dataset of bounding boxes' tracks and reindex | ||
it to every frame. | ||
""" | ||
|
||
# %% | ||
import math | ||
|
||
import sleap_io as sio | ||
from cycler import cycler | ||
from matplotlib import pyplot as plt | ||
|
||
from movement import sample_data | ||
from movement.filtering import interpolate_over_time | ||
from movement.io import load_bboxes | ||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Select sample data file | ||
# -------------------- | ||
# For this example, we will use the path to one of | ||
# the sample datasets provided with ``movement``. | ||
|
||
dataset_dict = sample_data.fetch_dataset_paths( | ||
"VIA_single-crab_MOCA-crab-1.csv", | ||
with_video=True, # for visualisation | ||
) | ||
|
||
file_path = dataset_dict["bboxes"] | ||
print(file_path) | ||
|
||
ds = load_bboxes.from_via_tracks_file( | ||
file_path, use_frame_numbers_from_file=True | ||
) | ||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Only 1 in 5 frames are annotated, plus the last frame (167) | ||
print(ds) | ||
print("-----") | ||
print(ds.time) | ||
|
||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Extend the dataset to every frame by forward filling | ||
# The position and shape data arrays are filled with the last valid value | ||
# So position and shape are kept constant when no annotation is available | ||
ds_ff = ds.reindex( | ||
{"time": list(range(ds.time[-1].item()))}, | ||
method="ffill", # propagate last valid index value forward | ||
) | ||
|
||
print("Position data array (first 14 frames):") | ||
print(ds_ff.position.data[:14, 0, :]) # time, individual, space | ||
|
||
print("----") | ||
print("Shape data array (first 14 frames):") | ||
print(ds_ff.shape.data[:14, 0, :]) # time, individual, space | ||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Extend the dataset to every frame and fill empty values with nan | ||
ds_nan = ds.reindex( | ||
{"time": list(range(ds.time[-1].item()))}, | ||
method=None, # default | ||
) | ||
|
||
print("Position data array (first 14 frames):") | ||
print(ds_nan.position.data[:14, 0, :]) | ||
|
||
print("----") | ||
print("Shape data array (first 14 frames):") | ||
print(ds_nan.shape.data[:14, 0, :]) | ||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Linearly interpolate position and shape with nan | ||
|
||
ds_interp = ds_nan.copy() | ||
|
||
for data_array_str in ["position", "shape"]: | ||
ds_interp[data_array_str] = interpolate_over_time( | ||
data=ds_interp[data_array_str], | ||
method="linear", | ||
max_gap=None, | ||
print_report=False, | ||
) | ||
|
||
print("Position data array (first 14 frames):") | ||
print(ds_interp.position.data[:14, 0, :]) | ||
|
||
print("----") | ||
print("Shape data array (first 14 frames):") | ||
print(ds_interp.shape.data[:14, 0, :]) | ||
|
||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Inspect associated video | ||
|
||
video_path = dataset_dict["video"] | ||
|
||
|
||
video = sio.load_video(video_path) | ||
|
||
n_frames, height, width, channels = video.shape | ||
|
||
print(f"Number of frames: {n_frames}") # The video contains all frames | ||
print(f"Frame size: {width}x{height}") | ||
print(f"Number of channels: {channels}") | ||
|
||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Plot data | ||
# OJO camera movement | ||
|
||
# select indices of data to plot | ||
data_start_idx = 0 | ||
data_end_idx = 11 | ||
|
||
# initialise figure | ||
fig = plt.figure(figsize=(15, 12)) | ||
|
||
# add color cycler to axes | ||
plt.rcParams["axes.prop_cycle"] = cycler(color=plt.get_cmap("tab10").colors) | ||
color_cycle = plt.rcParams["axes.prop_cycle"].by_key()["color"] | ||
|
||
# loop over data and plot over corresponding frame | ||
for p_i, data_idx in enumerate(range(data_start_idx, data_end_idx)): | ||
# add subplot axes | ||
ax = plt.subplot(math.ceil(data_end_idx / 5), 5, p_i + 1) | ||
|
||
# plot frame | ||
ax.imshow( | ||
video[ds.time[data_idx].item()] | ||
) # the video is indexed at every frame! use frame number as index | ||
|
||
# plot annotated boxes | ||
top_left_corner = ( | ||
ds.position[data_idx, 0, :].data - ds.shape[data_idx, 0, :].data / 2 | ||
) | ||
bbox = plt.Rectangle( | ||
xy=tuple(top_left_corner), | ||
width=ds.shape[data_idx, 0, 0].data, # x coord | ||
height=ds.shape[data_idx, 0, 1].data, # y coord of shape array | ||
edgecolor=color_cycle[0], # [data_idx % len(color_cycle)], | ||
facecolor="none", # transparent fill | ||
linewidth=1.5, | ||
) | ||
ax.add_patch(bbox) | ||
|
||
ax.set_title(f"Frame {ds.time[data_idx].item()}") | ||
|
||
fig.tight_layout() | ||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Compare interpolation methods | ||
|
||
# select frames to inspect | ||
frame_number_start = 0 | ||
frame_number_end = 6 | ||
|
||
# add color cycler to axes | ||
plt.rcParams["axes.prop_cycle"] = cycler(color=plt.get_cmap("tab10").colors) | ||
color_cycle = plt.rcParams["axes.prop_cycle"].by_key()["color"] | ||
|
||
|
||
# initialise figure | ||
fig = plt.figure(figsize=(15, 12)) | ||
|
||
|
||
# loop over data and plot over corresponding frame | ||
for frame_n in range(frame_number_start, frame_number_end): | ||
# add subplot axes | ||
ax = plt.subplot(1, 6, frame_n + 1) | ||
|
||
# plot frame | ||
ax.imshow(video[frame_n]) | ||
# the video is indexed at every frame! use frame number as index | ||
|
||
# plot bounding box: box and centroid | ||
for ds_i, ds in enumerate([ds_nan, ds_ff, ds_interp]): | ||
# plot box | ||
top_left_corner = ( | ||
ds.position.sel(time=frame_n, individuals="id_1").data | ||
- ds.shape.sel(time=frame_n, individuals="id_1").data / 2 | ||
) | ||
bbox = plt.Rectangle( | ||
xy=tuple(top_left_corner), | ||
width=ds.shape.sel( | ||
time=frame_n, individuals="id_1", space="x" | ||
).data, # x coord | ||
height=ds.shape.sel( | ||
time=frame_n, individuals="id_1", space="y" | ||
).data, # y coord of shape array | ||
edgecolor=color_cycle[ds_i], | ||
facecolor="none", # transparent fill | ||
linewidth=[4.5, 1.5, 1.5][ds_i], | ||
linestyle=["dotted", "solid", "solid"][ds_i], | ||
label=["nan", "ffill", "linear"][ds_i], | ||
) | ||
ax.add_patch(bbox) | ||
|
||
# plot centroid | ||
ax.scatter( | ||
x=ds.position.sel( | ||
time=frame_n, individuals="id_1", space="x" | ||
).data, | ||
y=ds.position.sel( | ||
time=frame_n, individuals="id_1", space="y" | ||
).data, | ||
s=5, | ||
color=color_cycle[ds_i], | ||
) | ||
|
||
if frame_n == 0: | ||
ax.legend() | ||
ax.set_title(f"Frame {frame_n}") | ||
|
||
fig.tight_layout() | ||
|
||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
# Export as csv file |