-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
182 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,14 +1,16 @@ | ||
from .toy import get_toy_palette, sample_toy_networks | ||
from .utils import set_warnings | ||
from .wrangle import ( | ||
create_node_data, | ||
ensure_connected, | ||
get_hemisphere_indices, | ||
get_paired_inds, | ||
get_paired_subgraphs, | ||
get_seeds, | ||
to_largest_connected_component, | ||
to_pandas_edgelist, | ||
remove_group, | ||
create_node_data, | ||
select_lateral_nodes, | ||
ensure_connected, | ||
split_connectome, | ||
split_nodes, | ||
to_largest_connected_component, | ||
to_pandas_edgelist, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
#%% [markdown] | ||
# # Timing | ||
|
||
#%% | ||
import datetime | ||
import time | ||
|
||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
import seaborn as sns | ||
from giskard.match import GraphMatchSolver | ||
from giskard.plot import matched_stripplot | ||
from pkg.data import load_split_connectome | ||
from pkg.io import OUT_PATH | ||
from pkg.io import glue as default_glue | ||
from pkg.io import savefig | ||
from pkg.plot import method_palette, set_theme | ||
from scipy.stats import wilcoxon | ||
from tqdm import tqdm | ||
from scipy.sparse import csr_matrix | ||
|
||
FILENAME = "check_repro" | ||
|
||
DISPLAY_FIGS = True | ||
|
||
OUT_PATH = OUT_PATH / FILENAME | ||
|
||
|
||
def glue(name, var, **kwargs): | ||
default_glue(name, var, FILENAME, **kwargs) | ||
|
||
|
||
def gluefig(name, fig, **kwargs): | ||
savefig(name, foldername=FILENAME, **kwargs) | ||
|
||
glue(name, fig, figure=True) | ||
|
||
if not DISPLAY_FIGS: | ||
plt.close() | ||
|
||
|
||
t0 = time.time() | ||
|
||
#%% [markdown] | ||
# ## Load processed data, run matching experiment | ||
#%% | ||
|
||
|
||
def get_hemisphere_indices(nodes): | ||
nodes = nodes.copy() | ||
nodes["_inds"] = np.arange(len(nodes)) | ||
left_nodes = nodes[nodes["hemisphere"] == "L"] | ||
right_nodes = nodes[nodes["hemisphere"] == "R"] | ||
assert (left_nodes["pair"].values == right_nodes["pair"].values).all() | ||
left_indices = left_nodes["_inds"].values | ||
right_indices = right_nodes["_inds"].values | ||
return left_indices, right_indices | ||
|
||
|
||
RERUN_SIMS = True | ||
dataset = "maggot_subset" | ||
|
||
n_sims = 20 | ||
rows = [] | ||
for sparse in [True, False]: | ||
rng = np.random.default_rng(8888) | ||
|
||
adj, nodes = load_split_connectome(dataset) | ||
if sparse: | ||
adj = csr_matrix(adj) | ||
n_nodes = len(nodes) | ||
# n_edges = np.count_nonzero(adj) | ||
|
||
left_inds, right_inds = get_hemisphere_indices(nodes) | ||
A = adj[left_inds][:, left_inds] | ||
B = adj[right_inds][:, right_inds] | ||
AB = adj[left_inds][:, right_inds] | ||
BA = adj[right_inds][:, left_inds] | ||
|
||
n_side = len(left_inds) | ||
seeds = rng.integers(np.iinfo(np.uint32).max, size=n_sims) | ||
|
||
for sim, seed in enumerate(tqdm(seeds, leave=False)): | ||
for method in ["GM", "BGM"]: | ||
if method == "GM": | ||
solver = GraphMatchSolver(A, B, rng=seed) | ||
elif method == "BGM": | ||
solver = GraphMatchSolver(A, B, AB=AB, BA=BA, rng=seed) | ||
run_start = time.time() | ||
solver.solve() | ||
match_ratio = (solver.permutation_ == np.arange(n_side)).mean() | ||
elapsed = time.time() - run_start | ||
rows.append( | ||
{ | ||
"match_ratio": match_ratio, | ||
"sim": sim, | ||
"method": method, | ||
"seed": seed, | ||
"converged": solver.converged, | ||
"n_iter": solver.n_iter, | ||
"score": solver.score_, | ||
"elapsed": elapsed, | ||
"sparse": sparse, | ||
} | ||
) | ||
results = pd.DataFrame(rows) | ||
|
||
#%% | ||
sparse_results = results[results["sparse"]] | ||
nonsparse_results = results[~results["sparse"]] | ||
set_theme() | ||
fig, axs = plt.subplots(1, 4, figsize=(12, 8), constrained_layout=True) | ||
for i, key in enumerate(["match_ratio", "elapsed"]): | ||
ax = axs[2 * i] | ||
diff = ( | ||
sparse_results.groupby(["method", "seed"])[key].mean() | ||
- nonsparse_results.groupby(["method", "seed"])[key].mean() | ||
) | ||
sns.stripplot(y=diff, ax=ax) | ||
ax.axhline(0, color="black") | ||
ax.set_ylabel(f"{key} (sparse - nonsparse)") | ||
|
||
ax = axs[2 * i + 1] | ||
sns.histplot(y=diff, ax=ax) | ||
ax.axhline(0, color="black") | ||
ax.set(ylabel="", yticks=[], xlabel="", xticks=[ax]) | ||
|
||
|
||
#%% | ||
# #%% | ||
# from giskard.match import GraphMatchSolver | ||
|
||
# sparse = True | ||
adj, nodes = load_split_connectome(dataset) | ||
sparse = True | ||
if sparse: | ||
adj = csr_matrix(adj) | ||
print(adj.dtype) | ||
# n_nodes = len(nodes) | ||
# # n_edges = np.count_nonzero(adj) | ||
|
||
# left_inds, right_inds = get_hemisphere_indices(nodes) | ||
# A = adj[left_inds][:, left_inds] | ||
# B = adj[right_inds][:, right_inds] | ||
# AB = adj[left_inds][:, right_inds] | ||
# BA = adj[right_inds][:, left_inds] | ||
|
||
# solver = GraphMatchSolver(A, B, rng=seed) | ||
# print(solver._sparse) | ||
# # print(solver.B) | ||
# # | ||
# # solver._seeded | ||
# # solver.compute_constant_terms() | ||
# solver.solve() |