Skip to content

Commit

Permalink
Merge branch 'master' of https://github.com/ncss-tech/dsm-focus
Browse files Browse the repository at this point in the history
  • Loading branch information
JPhilippe19 committed Nov 18, 2024
2 parents 13dd92d + 22a79ec commit 1e9c0ec
Show file tree
Hide file tree
Showing 5 changed files with 631 additions and 2 deletions.
350 changes: 350 additions & 0 deletions google-cloud-platform/aws-migration/8-vic_scripts_modeling.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,350 @@
# 8-VIC modeling


# 10/31/24

# Dave White
start.time <- Sys.time()

# load and install packages
required.packages <- c( "caret", "sf", "terra", "randomForest", "doParallel", "aqp", "parallel", "snow", "foreign", "foreach")
new.packages <- required.packages[!(required.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
lapply(required.packages, require, character.only=T)
rm(required.packages, new.packages)



# bring in covariate data and create a stack

# set working directory to dem covs
setwd("~/data/8-vic/cov")

# read in raster file names as a list
rList=list.files(getwd(), pattern="tif$", full.names = FALSE)

# create a raster stack of dem covs
rStack <- rast(rList)
names(rStack) <- gsub(".tif", "",rList)
names(rStack) <- gsub("-", "", names(rStack))
names(rStack) <- gsub("_", "", names(rStack))
names(rStack)


# Bring in training data points
# read in shapefile
# bring in pedon data

#set working directory to training data.
setwd("~/data/8-vic/data")

pts <- read_sf("pedons.shp")

# extract raster covariate values at each training point for the all.pts dataset
pts.sv <- terra::extract(rStack, pts, xy=F, bind=TRUE, na.rm=TRUE)

# convert SpatVector to sf
all.pts <- sf::st_as_sf(pts.sv)

names(all.pts)

# remove unwanted cols
all.pts <- all.pts[-c(1:14)]
colnames(all.pts)[1] <- "class"
names(all.pts)
all.pts$class <- as.factor(all.pts$class)
names(all.pts)
#
levels(all.pts$class)


# convert sf to a dataframe
pts.all <- as.data.frame(all.pts)
names(pts.all)

comp <- pts.all[,!(colnames(pts.all)%in% c("geometry"))]
names(comp)


# remove any observations with NAs
comp <- comp[complete.cases(comp),]

# convert Class col to a factor
#comp$Class <- as.factor(comp$Class)
is.factor(comp$class)
levels(comp$class)
summary((comp$class))

# There are a few classes with < 2 observations remove those classes

nlevels(comp$class)

comp = droplevels(comp[comp$class %in% names(table(comp$class)) [table(comp$class) >2],])

nlevels(comp$class)

levels(comp$class)
summary(comp$class)


length(levels(comp$class))
gc()

#---------------------------------------------------------------------------
# Recursive Feature Selection (RFE)


subsets <- seq(50, length(names(rStack)), 5)

#set number and repeats for cross validation
number = 10
repeats = 1

# set seeds to get reproducible results when running the process in parallel
set.seed(12)
seeds <- vector(mode = "list", length=(number*repeats+1))
for(i in 1:(number*repeats)) seeds[[i]] <- sample.int(1000, length(subsets)+1)
seeds[[(number*repeats+1)]] <- sample.int(1000, 1)


cl <- makeCluster(121) # base R only recognizes 128 cores and about 5 need to be left for OS
registerDoParallel(cl)

# set up the rfe control
ctrl.RFE <- rfeControl(functions = rfFuncs,
method = "repeatedcv",
number = number,
repeats = repeats,
seeds = seeds,
verbose = F)

## highlight and run everything from c1 to stopCluster(c1) to run RFE
rfe <- rfe(x = comp[,-c(1)],
y = comp$class,
sizes = subsets,
rfeControl = ctrl.RFE,
allowParallel = TRUE
)
stopCluster(cl)
gc()


# Look at the results
rfe
plot(rfe)



rfe$fit$confusion
rfe$results

# see list of predictors
predictors(rfe)

# the rfe function retuns the covariates with the highest accuracy for the rf model
# view the highest accuracy noted by the *
rfe

# take the accuracy and subtract the accuracySD. look in the results of rf.RFE and find the accuracy that is > or = to this value. this is the number of covariates to use below
#predictors(rfeLand) # top number of covariates

# look at the top number of covariates that are equal to greater than the accuracy minus the accuracySD
#predictors(rf.RFE)[c(1:9,24:26)]

# assign this to a variable
a <- predictors(rfe)#[c(1:50)]


# subset the covariate stack and the data frame by the selected covariates the variable a is your selected covariates

# subsed the raser stack to the selected covariates
rsm <- subset(rStack, a)


# subset the data frame points with the number of covariates selected
names(comp)
comp.sub <- (comp[,c("class", a)])


names(comp.sub)
is.factor(comp.sub$class)

subsets <- seq(1, length(names(rsm)), 5)

#set number and repeats for cross validation
number = 10
repeats = 5

# set seeds to get reproducible results when running the process in parallel
set.seed(12)
seeds <- vector(mode = "list", length=(number*repeats+1))
for(i in 1:(number*repeats)) seeds[[i]] <- sample.int(1000, length(subsets)+1)
seeds[[(number*repeats+1)]] <- sample.int(1000, 1)


# set up the train control
fitControl <- trainControl(method = "repeatedcv",
number = number,
repeats = repeats,
p = 0.8, #30% used for test set, 70% used for training set
selectionFunction = 'best',
classProbs = T,
savePredictions = T,
returnResamp = 'final',
search = "random",
seeds = seeds)

cl <- makeCluster(121)
registerDoParallel(cl)
# Random Forest - Parallel process
rfm = train(x = comp.sub[,-c(1)],
y = comp.sub$class,
"rf",
trControl = fitControl,
ntree = 500, #number of trees default is 500, which seems to work best anyway.
tuneLength=10,
metric = 'Kappa',
na.action=na.pass,
keep.forest=TRUE, # added this line and the next for partial dependence plots
importance=TRUE)
stopCluster(cl)
gc()


# Inspect rfFit
rfm$finalModel


#look at overall accuracy, kappa, and SD associated with each mtry value
print(rfm)
rfm$results


# Convert caret wrapper into randomforest model object for raster prediction
rfm <- rfm$finalModel







# make predictions

# set wd to store tiles for prediction - tiles are written to hard drive, make sure there is enough room
setwd("~/data/8-vic/data/tiles/")


#numTiles <- 11 # numTiles^2 should <= the number of cores - in this case I have 123 cores available and 11x11 would give 121 tiles
numTiles <- (round(sqrt(121), digits = 0))

x <- rast(ncol=numTiles, nrow=numTiles, extent=ext(rsm))

tl <- makeTiles(rsm, x, overwrite=T, extend=T)
tl <- list.files("~/data/8-vic/data/tiles/", pattern=".tif$", full.names=FALSE)

gc()
# read in raster file names as a list
#rList=list.files(getwd(), pattern="tif$", full.names = FALSE)


cl <- parallel::makeCluster(round(length(tl)/2))
registerDoParallel(cl)

pred <- foreach(i = 1:length(tl), .packages = c("terra", "randomForest")) %dopar% {
pred <- wrap(terra::predict(rast(tl[i]),rfm, na.rm=T))#wopt=list(steps=40)
return(pred)
}
pred <- do.call(terra::merge,lapply(pred,terra::rast))
plot(pred)
setwd("~/data/8-vic/results")
# write rasters
writeRaster(pred, overwrite = TRUE, filename = "class.tif", gdal=c("TFW=YES"),datatype='INT1U')
# write raster attribute table
#library(foreign)
write.dbf(levels(pred)[[1]], file='class.tif.vat.dbf') # make sure the first part of the file name is exactly the same as the predicted raster
stopCluster(cl)
gc()




#set directory to prob tiles
setwd("~/data/8-vic/data/tiles/")

# read in raster file names as a list
tl=list.files(getwd(), pattern="tif$", full.names = TRUE)
tlnames=list.files(getwd(), pattern="tif$", full.names = FALSE)
tlnames <- gsub(".tif", "", tlnames)
tlnames <- gsub("tile", "prob", tlnames)

cl <- parallel::makeCluster(round(length(tl)/2))
registerDoParallel(cl)

foreach(i = 1:length(tl), .packages = c("terra", "randomForest")) %dopar% {
wrap(terra::predict(rast(tl[i]), rfm, na.rm=T, type="prob",
filename = paste0("~/data/8-vic/results/prob/",tlnames[i],".tif"),
gdal=c("TFW=YES"),
overwrite=T))
}

stopCluster(cl)
gc()






#set directory to prob tiles
setwd("~/data/8-vic/results/prob")

# read in raster file names as a list
rList=list.files(getwd(), pattern="tif$", full.names = FALSE)



cl <- parallel::makeCluster(round(length(tl)/2))
registerDoParallel(cl)
shan <- foreach(i = 1:length(rList),
.packages = c("terra", "aqp")) %dopar% {
shan <- wrap(aqp::shannonEntropy(terra::rast(rList[i])))
return(shan)
}
shan <- do.call(terra::merge,lapply(shan, terra::rast))
plot(shan)

gc()

#normalized shan entropy
b <- length(levels(pred)[[1]])
shanNorm <- foreach(i = 1:length(rList),
.packages = c("terra", "aqp")) %dopar% {
shanNorm1 <- wrap(aqp::shannonEntropy(terra::rast(rList[i]), b=b))
return(shanNorm1)
}
shanNorm <- do.call(terra::merge,lapply(shanNorm, terra::rast))
plot(shanNorm)

setwd("~/data/8-vic/results")
writeRaster(shan, overwrite = TRUE, filename = "shan.tif", gdal=c("TFW=YES"))
writeRaster(shanNorm, overwrite = TRUE, filename = "shanNorm.tif", gdal=c("TFW=YES"))

stopCluster(cl)

# get confusion matrix from model
cm <- confusionMatrix(rfm$predicted, rfm$y)


end.time <- Sys.time()

time.taken <- end.time - start.time

time.taken
saveRDS(time.taken, "timeTaken.rds")


## Transfer the script to the storage bucket:
## Copy the line below and run in the terminal
## change the name of file and path as necessary
##gsutil -m cp ~/data/8-vic/scripts/modeling.R gs://sbs-aws-migration-s2026-8-vic/8-vic/scripts/
Loading

0 comments on commit 1e9c0ec

Please sign in to comment.