Skip to content

Commit

Permalink
Merge branch 'master' into conn_types
Browse files Browse the repository at this point in the history
  • Loading branch information
clbarnes authored Nov 14, 2023
2 parents 0bb6354 + 9e37766 commit e229a5e
Show file tree
Hide file tree
Showing 8 changed files with 464 additions and 1 deletion.
5 changes: 5 additions & 0 deletions docs/source/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -501,6 +501,11 @@ Connectivity
++++++++++++
Collection of functions to work with graphs and adjacency matrices.

.. autosummary::
:toctree: generated/

navis.NeuronConnector

Graphs
------
Functions to convert neurons and networkx to iGraph or networkX graphs.
Expand Down
2 changes: 2 additions & 0 deletions docs/source/whats_new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@ repository.
- :class:`navis.NodeConnectorRelation` is an :class:`enum.IntEnum`
encoding relationships between (tree)nodes and connector nodes,
used in neurons' connector tables.
- new :class:`navis.NeuronConnector` class for creating connectivity graphs
from groups neurons with consistent connector IDs.
- Improvements:
- made adding recordings to ``CompartmentModel`` faster
- improved logic for splitting NBLAST across cores
Expand Down
4 changes: 3 additions & 1 deletion navis/connectivity/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,10 @@

from .predict import cable_overlap
from .matrix_utils import group_matrix
from .adjacency import NeuronConnector
from .cnmetrics import connectivity_sparseness
from .similarity import connectivity_similarity, synapse_similarity

__all__ = ['connectivity_sparseness', 'cable_overlap',
'connectivity_similarity', 'synapse_similarity']
'connectivity_similarity', 'synapse_similarity',
'NeuronConnector']
236 changes: 236 additions & 0 deletions navis/connectivity/adjacency.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
from typing import Iterable, Optional, NamedTuple
from ..core import TreeNeuron
import networkx as nx
import pandas as pd
import numpy as np
from ..config import get_logger

logger = get_logger(__name__)

OTHER = "__OTHER__"


class Edge(NamedTuple):
connector_id: int
source_name: str
target_name: str
source_node: Optional[int]
target_node: Optional[int]


class NeuronConnector:
"""Class which creates a connectivity graph from a set of neurons.
Connectivity is determined by shared IDs in the ``connectors`` table.
Add neurons with the `add_neuron` and `add_neurons` methods.
Alternatively, supply an iterable of neurons in the constructor.
Neurons must have unique names.
See the `to_(multi)digraph` method for output.
"""

def __init__(self, nrns: Optional[Iterable[TreeNeuron]] = None) -> None:
self.neurons = dict()
self.connector_xyz = dict()
# connectors and the treenodes presynaptic to them
self.conn_inputs = dict()
# connectors and the treenodes postsynaptic to them
self.conn_outputs = dict()

if nrns is not None:
self.add_neurons(nrns)

def __len__(self) -> int:
return len(self.neurons)

def add_neurons(self, nrns: Iterable[TreeNeuron]):
"""Add several neurons to the connector.
All neurons must have unique names.
Parameters
----------
nrns : Iterable[TreeNeuron]
Returns
-------
Modified connector.
"""
for nrn in nrns:
self.add_neuron(nrn)
return self

def add_neuron(self, nrn: TreeNeuron):
"""Add a single neuron to the connector.
All neurons must have unique names.
Parameters
----------
nrn : TreeNeuron
Returns
-------
Modified connector.
"""
if nrn.name in self.neurons:
logger.warning(
"Neuron with name %s has already been added to NeuronConnector. "
"These will occupy the same node in the graph, "
"but have connectors from both.",
nrn.name
)

self.neurons[nrn.name] = nrn
if nrn.connectors is None:
logger.warning("Neuron with name %s has no connector information", nrn.name)
return self

for row in nrn.connectors.itertuples():
# connector_id, node_id, x, y, z, is_input
self.connector_xyz[row.connector_id] = (row.x, row.y, row.z)
if row.type == 1:
self.conn_outputs.setdefault(row.connector_id, []).append((nrn.name, row.node_id))
elif row.type == 0:
if row.connector_id in self.conn_inputs:
logger.warning(
"Connector with ID %s has multiple inputs: "
"connector tables are probably inconsistent",
row.connector_id
)
self.conn_inputs[row.connector_id] = (nrn.name, row.node_id)

return self

def edges(self, include_other=True) -> Iterable[Edge]:
"""Iterate through all synapse edges.
Parameters
----------
include_other : bool, optional
Include edges for which only one partner is known, by default True.
If included, the name of the unknown partner will be ``"__OTHER__"``,
and the treenode ID will be None.
Yields
------
tuple[int, str, str, int, int]
Connector ID, source name, target name, source treenode, target treenode.
"""
for conn_id in set(self.conn_inputs).union(self.conn_outputs):
src, src_node = self.conn_inputs.get(conn_id, (OTHER, None))
if src_node is None and not include_other:
continue
for tgt, tgt_node in self.conn_outputs.get(conn_id, [(OTHER, None)]):
if tgt_node is None and not include_other:
continue
yield Edge(conn_id, src, tgt, src_node, tgt_node)

def to_adjacency(self, include_other=True) -> pd.DataFrame:
"""Create an adjacency matrix of neuron connectivity.
Parameters
----------
include_other : bool, optional
Whether to include a node called ``"__OTHER__"``,
which represents all unknown partners.
By default True.
This can be helpful when calculating a neuron's input fraction,
but cannot be used for output fractions if synapses are polyadic.
Returns
-------
pandas.DataFrame
Row index is source neuron name,
column index is target neuron name,
cells are the number of synapses from source to target.
"""
index = list(self.neurons)
if include_other:
index.append(OTHER)
data = np.zeros((len(index), len(index)), np.uint64)
df = pd.DataFrame(data, index, index)
for _, src, tgt, _, _ in self.edges(include_other):
df[tgt][src] += 1

return df

def to_digraph(self, include_other=True) -> nx.DiGraph:
"""Create a graph of neuron connectivity.
Parameters
----------
include_other : bool, optional
Whether to include a node called ``"__OTHER__"``,
which represents all unknown partners.
By default True.
This can be helpful when calculating a neuron's input fraction,
but cannot be used for output fractions if synapses are polyadic.
Returns
-------
nx.DiGraph
The graph has data ``{"connector_xyz": {connector_id: (x, y, z), ...}}``.
The nodes have data ``{"neuron": tree_neuron}``.
The edges have data ``{"connectors": data_frame, "weight": n_connectors}``,
where the connectors data frame has columns
"connector_id", "pre_node", "post_node".
"""
g = nx.DiGraph()
g.add_nodes_from((k, {"neuron": v}) for k, v in self.neurons.items())
if include_other:
g.add_node(OTHER, neuron=None)

g.graph["connector_xyz"] = self.connector_xyz
headers = {
"connector_id": pd.UInt64Dtype(),
"pre_node": pd.UInt64Dtype(),
"post_node": pd.UInt64Dtype(),
}
edges = dict()
for conn_id, src, tgt, src_node, tgt_node in self.edges(include_other):
edges.setdefault((src, tgt), []).append([conn_id, src_node, tgt_node])

for (src, tgt), rows in edges.items():
df_tmp = pd.DataFrame(rows, columns=list(headers), dtype=object)
df = df_tmp.astype(headers, copy=False)
g.add_edge(src, tgt, connectors=df, weight=len(df))

return g

def to_multidigraph(self, include_other=True) -> nx.MultiDiGraph:
"""Create a graph of neuron connectivity where each synapse is an edge.
Parameters
----------
include_other : bool, optional
Whether to include a node called ``"__OTHER__"``,
which represents all unknown partners.
By default True.
This can be helpful when calculating a neuron's input fraction,
but cannot be used for output fractions if synapses are polyadic.
Returns
-------
nx.MultiDiGraph
The nodes have data ``{"neuron": tree_neuron}``.
The edges have data
``{"pre_node": presyn_treenode_id, "post_node": postsyn_treenode_id, "xyz": connector_location, "connector_id": conn_id}``.
"""
g = nx.MultiDiGraph()
g.add_nodes_from((k, {"neuron": v}) for k, v in self.neurons.items())
if include_other:
g.add_node(OTHER, neuron=None)

for conn_id, src, tgt, src_node, tgt_node in self.edges(include_other):
g.add_edge(
src,
tgt,
pre_node=src_node,
post_node=tgt_node,
xyz=self.connector_xyz[conn_id],
connector_id=conn_id,
)

return g
29 changes: 29 additions & 0 deletions tests/conftest.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import json
from pathlib import Path
import os
from typing import List
Expand All @@ -15,6 +16,11 @@ def data_dir():
return Path(__file__).resolve().parent.parent / "navis" / "data"


@pytest.fixture(scope="session")
def fixture_dir():
return Path(__file__).resolve().parent / "fixtures"


@pytest.fixture(
params=["Path", "pathstr", "swcstr", "textbuffer", "rawbuffer", "DataFrame"]
)
Expand Down Expand Up @@ -115,3 +121,26 @@ def treeneuron_dfs(swc_paths, synapses_paths):
neuron.connectors = pd.read_csv(syn_path)
out.append(neuron)
return out


@pytest.fixture
def neuron_connections(fixture_dir: Path):
expected_jso = json.loads(
fixture_dir.joinpath("neuron_connector", "expected.json").read_text()
)
expected = {
int(pre): {
int(post): n for post, n in d.items()
} for pre, d in expected_jso.items()
}

nl = navis.read_json(
str(fixture_dir.joinpath("neuron_connector", "network.json"))
)
nrns = []
for nrn in nl:
nrn.name = f"skeleton {nrn.id}"
nrn.id = int(nrn.id)
nrns.append(nrn)

return nrns, expected
50 changes: 50 additions & 0 deletions tests/fixtures/neuron_connector/expected.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
{
"2582391": {
"2582391": 0,
"6557581": 10,
"8198416": 12,
"8198513": 14,
"8252067": 41,
"11051276": 55
},
"6557581": {
"2582391": 9,
"6557581": 0,
"8198416": 8,
"8198513": 9,
"8252067": 1,
"11051276": 9
},
"8198416": {
"2582391": 8,
"6557581": 8,
"8198416": 0,
"8198513": 14,
"8252067": 9,
"11051276": 10
},
"8198513": {
"2582391": 7,
"6557581": 13,
"8198416": 16,
"8198513": 0,
"8252067": 9,
"11051276": 5
},
"8252067": {
"2582391": 0,
"6557581": 3,
"8198416": 0,
"8198513": 1,
"8252067": 0,
"11051276": 1
},
"11051276": {
"2582391": 0,
"6557581": 2,
"8198416": 1,
"8198513": 1,
"8252067": 0,
"11051276": 0
}
}
1 change: 1 addition & 0 deletions tests/fixtures/neuron_connector/network.json

Large diffs are not rendered by default.

Loading

0 comments on commit e229a5e

Please sign in to comment.