forked from b02901145/SSR-Net_megaage-asian
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
80 changed files
with
14,926 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
import numpy as np | ||
import sys | ||
import logging | ||
import csv | ||
import os | ||
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' | ||
from TYY_utils import mk_dir, load_data_npz | ||
from TYY_model import TYY_DenseNet_reg | ||
|
||
def MAE(a,b): | ||
mae = np.sum(np.absolute(a-b)) | ||
mae/=len(b) | ||
return mae | ||
|
||
''''''''''''''''''''''''''''''''''''''''''''' | ||
file name | ||
''''''''''''''''''''''''''''''''''''''''''''' | ||
test_file = sys.argv[1] | ||
netType = int(sys.argv[2]) | ||
|
||
logging.debug("Loading testing data...") | ||
image2, age2, image_size = load_data_npz(test_file) | ||
|
||
if netType == 3: | ||
N_densenet = 3 | ||
depth_densenet = 3*N_densenet+4 | ||
model_file = 'megaage_models/DenseNet/batch_size_50/densenet_reg_%d_64/densenet_reg_%d_64.h5'%(depth_densenet, depth_densenet) | ||
model = TYY_DenseNet_reg(image_size,depth_densenet)() | ||
mk_dir('Results_csv') | ||
save_name = 'Results_csv/densenet_reg_%d_%d.csv' % (depth_densenet, image_size) | ||
|
||
elif netType == 4: | ||
N_densenet = 5 | ||
depth_densenet = 3*N_densenet+4 | ||
model_file = 'megaage_models/DenseNet/batch_size_50/densenet_reg_%d_64/densenet_reg_%d_64.h5'%(depth_densenet, depth_densenet) | ||
model = TYY_DenseNet_reg(image_size,depth_densenet)() | ||
mk_dir('Results_csv') | ||
save_name = 'Results_csv/densenet_reg_%d_%d.csv' % (depth_densenet, image_size) | ||
|
||
|
||
''''''''''''''''''''''''''''''''''''''''''''' | ||
load data | ||
''''''''''''''''''''''''''''''''''''''''''''' | ||
logging.debug("Loading model file...") | ||
model.load_weights(model_file) | ||
|
||
age_p=model.predict(image2) | ||
|
||
''''''''''''''''''''''''''''''''''''''''''''' | ||
prediction | ||
''''''''''''''''''''''''''''''''''''''''''''' | ||
pred=[['MAE'],[str(MAE(age2,age_p[:,0]))],['CA3','CA5'],['0','0'],['ID','age','age_p','error']] | ||
CA3=0 | ||
CA5=0 | ||
for i in range(0,len(image2)): | ||
error=np.absolute(age2[i]-age_p[i,0]) | ||
if error<=3: | ||
CA3+=1 | ||
if error<=5: | ||
CA5+=1 | ||
temp = [str(i), str(age2[i]), str(age_p[i,0]), str(error)] | ||
pred.append(temp) | ||
|
||
CA3/=len(image2) | ||
CA5/=len(image2) | ||
pred[3]=[str(CA3),str(CA5)] | ||
|
||
print('CA3: ',CA3,'\nCA5: ',CA5) | ||
|
||
f=open(save_name,'w') | ||
w=csv.writer(f) | ||
w.writerows(pred) | ||
f.close |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import numpy as np | ||
import sys | ||
import logging | ||
import csv | ||
import os | ||
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' | ||
|
||
from TYY_utils import mk_dir, load_data_npz | ||
from TYY_model import TYY_MobileNet_reg | ||
|
||
def MAE(a,b): | ||
mae = np.sum(np.absolute(a-b)) | ||
mae/=len(b) | ||
return mae | ||
|
||
''''''''''''''''''''''''''''''''''''''''''''' | ||
file name | ||
''''''''''''''''''''''''''''''''''''''''''''' | ||
test_file = sys.argv[1] | ||
netType = int(sys.argv[2]) | ||
|
||
logging.debug("Loading testing data...") | ||
image2, age2, image_size = load_data_npz(test_file) | ||
|
||
if netType == 1: | ||
alpha = 0.25 | ||
model_file = 'megaage_models/MobileNet/batch_size_50/mobilenet_reg_0.25_64/mobilenet_reg_0.25_64.h5' | ||
model = TYY_MobileNet_reg(image_size,alpha)() | ||
mk_dir('Results_csv') | ||
save_name = 'Results_csv/mobilenet_reg_%s_%d.csv' % (alpha, image_size) | ||
|
||
elif netType == 2: | ||
alpha = 0.5 | ||
model_file = 'megaage_models/MobileNet/batch_size_50/mobilenet_reg_0.5_64/mobilenet_reg_0.5_64.h5' | ||
model = TYY_MobileNet_reg(image_size,alpha)() | ||
mk_dir('Results_csv') | ||
save_name = 'Results_csv/mobilenet_reg_%s_%d.csv' % (alpha, image_size) | ||
|
||
|
||
''''''''''''''''''''''''''''''''''''''''''''' | ||
load data | ||
''''''''''''''''''''''''''''''''''''''''''''' | ||
logging.debug("Loading model file...") | ||
model.load_weights(model_file) | ||
|
||
age_p=model.predict(image2,batch_size=len(image2)) | ||
|
||
''''''''''''''''''''''''''''''''''''''''''''' | ||
prediction | ||
''''''''''''''''''''''''''''''''''''''''''''' | ||
pred=[['MAE'],[str(MAE(age2,age_p[:,0]))],['ID','age','age_p','error']] | ||
pred.append(['CA3','CA5']) | ||
pred.append(['0','0']) | ||
CA3=0 | ||
CA5=0 | ||
for i in range(0,len(image2)): | ||
error=np.absolute(age2[i]-age_p[i,0]) | ||
if error<=3: | ||
CA3+=1 | ||
if error<=5: | ||
CA5+=1 | ||
temp = [str(i), str(age2[i]), str(age_p[i,0]), str(error)] | ||
pred.append(temp) | ||
|
||
CA3/=len(image2) | ||
CA5/=len(image2) | ||
pred[4]=[str(CA3),str(CA5)] | ||
|
||
print('CA3: ',CA3,'\nCA5: ',CA5) | ||
|
||
f=open(save_name,'w') | ||
w=csv.writer(f) | ||
w.writerows(pred) | ||
f.close |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import keras | ||
from sklearn.metrics import roc_auc_score | ||
import sys | ||
import matplotlib.pyplot as plt | ||
from keras.models import Model | ||
import numpy as np | ||
from keras import backend as K | ||
|
||
|
||
class DecayLearningRate(keras.callbacks.Callback): | ||
def __init__(self, startEpoch): | ||
self.startEpoch = startEpoch | ||
|
||
def on_train_begin(self, logs={}): | ||
return | ||
def on_train_end(self, logs={}): | ||
return | ||
|
||
def on_epoch_begin(self, epoch, logs={}): | ||
if epoch in self.startEpoch: | ||
if epoch == 0: | ||
ratio = 1 | ||
else: | ||
ratio = 0.1 | ||
LR = K.get_value(self.model.optimizer.lr) | ||
K.set_value(self.model.optimizer.lr,LR*ratio) | ||
return | ||
|
||
def on_epoch_end(self, epoch, logs={}): | ||
return | ||
|
||
def on_batch_begin(self, batch, logs={}): | ||
return | ||
|
||
def on_batch_end(self, batch, logs={}): | ||
return |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import keras | ||
import numpy as np | ||
import sys | ||
from scipy import misc | ||
import tensorflow as tf | ||
|
||
|
||
def random_crop(x,dn): | ||
dx = np.random.randint(dn,size=1)[0] | ||
dy = np.random.randint(dn,size=1)[0] | ||
w = x.shape[0] | ||
h = x.shape[1] | ||
out = x[0+dx:w-(dn-dx),0+dy:h-(dn-dy),:] | ||
out = misc.imresize(out, (w,h), interp='nearest') | ||
return out | ||
|
||
def augment_data(images): | ||
for i in range(0,images.shape[0]): | ||
|
||
if np.random.random() > 0.5: | ||
images[i] = images[i][:,::-1] | ||
""" | ||
if np.random.random() > 0.5: | ||
images[i] = random_crop(images[i],4) | ||
""" | ||
if np.random.random() > 0.75: | ||
images[i] = tf.contrib.keras.preprocessing.image.random_rotation(images[i], 20, row_axis=0, col_axis=1, channel_axis=2) | ||
if np.random.random() > 0.75: | ||
images[i] = tf.contrib.keras.preprocessing.image.random_shear(images[i], 0.2, row_axis=0, col_axis=1, channel_axis=2) | ||
if np.random.random() > 0.75: | ||
images[i] = tf.contrib.keras.preprocessing.image.random_shift(images[i], 0.2, 0.2, row_axis=0, col_axis=1, channel_axis=2) | ||
if np.random.random() > 0.75: | ||
images[i] = tf.contrib.keras.preprocessing.image.random_zoom(images[i], [0.8,1.2], row_axis=0, col_axis=1, channel_axis=2) | ||
|
||
return images | ||
|
||
|
||
def data_generator_reg(X,Y,batch_size): | ||
|
||
while True: | ||
idxs = np.random.permutation(len(X)) | ||
X = X[idxs] | ||
Y = Y[idxs] | ||
p,q = [],[] | ||
for i in range(len(X)): | ||
p.append(X[i]) | ||
q.append(Y[i]) | ||
if len(p) == batch_size: | ||
yield augment_data(np.array(p)),np.array(q) | ||
p,q = [],[] | ||
if p: | ||
yield augment_data(np.array(p)),np.array(q) | ||
p,q = [],[] | ||
|
||
def data_generator_dex(X,Y,batch_size): | ||
|
||
Y1 = Y[0] | ||
Y2 = Y[1] | ||
|
||
while True: | ||
idxs = np.random.permutation(len(X)) | ||
X = X[idxs] | ||
Y1 = Y1[idxs] | ||
Y2 = Y2[idxs] | ||
p,q1,q2 = [],[],[] | ||
for i in range(len(X)): | ||
p.append(X[i]) | ||
q1.append(Y1[i]) | ||
q2.append(Y2[i]) | ||
if len(p) == batch_size: | ||
yield augment_data(np.array(p)),[np.array(q1),np.array(q2)] | ||
p,q1,q2 = [],[],[] | ||
if p: | ||
yield augment_data(np.array(p)),[np.array(q1),np.array(q2)] | ||
p,q1,q2 = [],[],[] | ||
|
||
def data_generator_dex_centerloss(X,Y,batch_size): | ||
X1 = X[0] | ||
X2 = X[1] | ||
Y1 = Y[0] | ||
Y2 = Y[1] | ||
Y3 = Y[2] | ||
while True: | ||
idxs = np.random.permutation(len(X1)) | ||
X1 = X1[idxs] #images | ||
X2 = X2[idxs] #labels for center loss | ||
Y1 = Y1[idxs] | ||
Y2 = Y2[idxs] | ||
Y3 = Y3[idxs] | ||
p1,p2,q1,q2,q3 = [],[],[],[],[] | ||
for i in range(len(X1)): | ||
p1.append(X1[i]) | ||
p2.append(X2[i]) | ||
q1.append(Y1[i]) | ||
q2.append(Y2[i]) | ||
q3.append(Y3[i]) | ||
if len(p1) == batch_size: | ||
yield [augment_data(np.array(p1)),np.array(p2)],[np.array(q1),np.array(q2),np.array(q3)] | ||
p1,p2,q1,q2,q3 = [],[],[],[],[] | ||
if p1: | ||
yield [augment_data(np.array(p1)),np.array(p2)],[np.array(q1),np.array(q2),np.array(q3)] | ||
p1,p2,q1,q2,q3 = [],[],[],[],[] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# This code is imported from the following project: https://github.com/asmith26/wide_resnets_keras | ||
|
||
import logging | ||
import sys | ||
import numpy as np | ||
from keras.models import Model | ||
from keras.layers import Input, Activation, add, Dense, Flatten, Dropout, Multiply, Embedding, Lambda, Add, Concatenate, Activation | ||
from keras.layers.convolutional import Conv2D, AveragePooling2D, MaxPooling2D | ||
from keras.layers.normalization import BatchNormalization | ||
from keras.regularizers import l2 | ||
from keras import backend as K | ||
from keras.optimizers import SGD,Adam | ||
from keras.applications.mobilenet import MobileNet | ||
from densenet import * | ||
from keras.utils import plot_model | ||
|
||
sys.setrecursionlimit(2 ** 20) | ||
np.random.seed(2 ** 10) | ||
|
||
|
||
class TYY_MobileNet_reg: | ||
def __init__(self, image_size, alpha): | ||
|
||
|
||
if K.image_dim_ordering() == "th": | ||
logging.debug("image_dim_ordering = 'th'") | ||
self._channel_axis = 1 | ||
self._input_shape = (3, image_size, image_size) | ||
else: | ||
logging.debug("image_dim_ordering = 'tf'") | ||
self._channel_axis = -1 | ||
self._input_shape = (image_size, image_size, 3) | ||
self.alpha = alpha | ||
|
||
# def create_model(self): | ||
def __call__(self): | ||
logging.debug("Creating model...") | ||
|
||
inputs = Input(shape=self._input_shape) | ||
model_mobilenet = MobileNet(input_shape=self._input_shape, alpha=self.alpha, depth_multiplier=1, dropout=1e-3, include_top=False, weights=None, input_tensor=None, pooling=None) | ||
x = model_mobilenet(inputs) | ||
#flatten = Flatten()(x) | ||
|
||
feat_a = Conv2D(20,(1,1),activation='relu')(x) | ||
feat_a = Flatten()(feat_a) | ||
feat_a = Dropout(0.2)(feat_a) | ||
feat_a = Dense(32,activation='relu',name='feat_a')(feat_a) | ||
|
||
pred_a = Dense(1,name='pred_a')(feat_a) | ||
model = Model(inputs=inputs, outputs=[pred_a]) | ||
|
||
|
||
return model | ||
|
||
|
||
class TYY_DenseNet_reg: | ||
def __init__(self, image_size, depth): | ||
|
||
if K.image_dim_ordering() == "th": | ||
logging.debug("image_dim_ordering = 'th'") | ||
self._channel_axis = 1 | ||
self._input_shape = (3, image_size, image_size) | ||
else: | ||
logging.debug("image_dim_ordering = 'tf'") | ||
self._channel_axis = -1 | ||
self._input_shape = (image_size, image_size, 3) | ||
self.depth = depth | ||
|
||
# def create_model(self): | ||
def __call__(self): | ||
logging.debug("Creating model...") | ||
|
||
inputs = Input(shape=self._input_shape) | ||
model_densenet = DenseNet(input_shape=self._input_shape, depth=self.depth, include_top=False, weights=None, input_tensor=None) | ||
flatten = model_densenet(inputs) | ||
|
||
feat_a = Dense(128,activation='relu')(flatten) | ||
feat_a = Dropout(0.2)(feat_a) | ||
feat_a = Dense(32,activation='relu',name='feat_a')(feat_a) | ||
|
||
pred_a = Dense(1,name='pred_a')(feat_a) | ||
model = Model(inputs=inputs, outputs=[pred_a]) | ||
|
||
return model | ||
|
||
|
Oops, something went wrong.