The following packages were used:
- [6710c13c] AutoGrad v1.2.5
https://github.com/denizyuret/AutoGrad.jl.git#master
- [336ed68f] CSV v0.10.4
- [052768ef] CUDA v3.10.0
- [a93c6f00] DataFrames v1.3.4
- [5789e2e9] FileIO v1.14.0
- [f67ccb44] HDF5 v0.16.10
- [7073ff75] IJulia v1.23.3
- [033835bb] JLD2 v0.4.22
- [1902f260] Knet v1.4.10
- [eb30cadb] MLDatasets v0.5.16
- [b9e938e5] NNHelferlein v1.1.1
https://github.com/KnetML/NNHelferlein.jl.git#main
- [8314cec4] PGFPlotsX v1.5.0
- [eadc2687] Pandas v1.5.3
- [f0f68f2c] PlotlyJS v0.18.8
- [91a5bcdd] Plots v1.29.0
- [438e738f] PyCall v1.93.1
- [295af30f] Revise v3.3.3
- [28f6a940] TensorFlow v0.12.0
https://github.com/malmaud/TensorFlow.jl.git#master
Make sure to install all with julia package manager
The structure of the repository:
- loaddata.ipynb -> preparing the genexpression data and the metadata
- VAE.ipynb -> training the VAE
- MLPAE -> training the MLP plus the AE