Skip to content

Commit

Permalink
Update phi3 transformer code and add test
Browse files Browse the repository at this point in the history
  • Loading branch information
Hải Trường authored and Hải Trường committed Jan 20, 2025
1 parent 01baaca commit b9ba243
Show file tree
Hide file tree
Showing 3 changed files with 230 additions and 8 deletions.
8 changes: 0 additions & 8 deletions mindone/transformers/models/phi3/modeling_phi3.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,8 +280,6 @@ def construct(
use_cache: bool = False,
cache_position: Optional[ms.Tensor] = None,
) -> Tuple[ms.Tensor, Optional[ms.Tensor], Optional[Tuple[ms.Tensor]]]:
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")

bsz, q_len, _ = hidden_states.shape

qkv = self.qkv_proj(hidden_states)
Expand Down Expand Up @@ -666,12 +664,6 @@ def construct(
# embed positions
hidden_states = inputs_embeds

# normalized
# Phi3 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = ms.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer

# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
Expand Down
Empty file.
230 changes: 230 additions & 0 deletions tests/transformers_tests/models/phi3/test_modeling_phi3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@
# This module contains test cases that are defined in the `.test_cases.py` file, structured as lists or tuples like
# [name, pt_module, ms_module, init_args, init_kwargs, inputs_args, inputs_kwargs, outputs_map].
#
# Each defined case corresponds to a pair consisting of PyTorch and MindSpore modules, including their respective
# initialization parameters and inputs for the forward. The testing framework adopted here is designed to generically
# parse these parameters to assess and compare the precision of forward outcomes between the two frameworks.
#
# In cases where models have unique initialization procedures or require testing with specialized output formats,
# it is necessary to develop distinct, dedicated test cases.

import inspect
import logging

import numpy as np
import pytest
import torch
from transformers import Phi3Config

import mindspore as ms

from tests.modeling_test_utils import (
MS_DTYPE_MAPPING,
PT_DTYPE_MAPPING,
compute_diffs,
generalized_parse_args,
get_modules,
)
from tests.transformers_tests.models.modeling_common import ids_numpy

DTYPE_AND_THRESHOLDS = {"fp32": 5e-4, "fp16": 5e-3, "bf16": 5e-3}
MODES = [0, 1]

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class Phi3ModelTester:
def __init__(
self,
batch_size=13,
seq_length=7,
is_training=False,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
self.head_dim = self.hidden_size // self.num_attention_heads

# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
def prepare_config_and_inputs(self):
input_ids = ids_numpy([self.batch_size, self.seq_length], self.vocab_size)

input_mask = None
if self.use_input_mask:
input_mask = np.tril(np.ones_like(input_ids))

token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_numpy([self.batch_size, self.seq_length], self.type_vocab_size)

sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_numpy([self.batch_size], self.type_sequence_label_size)
token_labels = ids_numpy([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_numpy([self.batch_size], self.num_choices)

config = self.get_config()
# logger.info(f"config: {config}")
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

def get_config(self):
return Phi3Config(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_activation=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
use_cache=False,
)


model_tester = Phi3ModelTester()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = model_tester.prepare_config_and_inputs()


PHI3_CASES = [
[
"Phi3Model",
"transformers.Phi3Model",
"mindone.transformers.Phi3Model",
(config,),
{},
(input_ids,),
{
"attention_mask": input_mask,
},
{
"last_hidden_state": 0,
},
],
]


# transformers need >= 4.41.2
@pytest.mark.parametrize(
"name,pt_module,ms_module,init_args,init_kwargs,inputs_args,inputs_kwargs,outputs_map,dtype,mode",
[
case
+ [
dtype,
]
+ [
mode,
]
for case in PHI3_CASES
for dtype in DTYPE_AND_THRESHOLDS.keys()
for mode in MODES
],
)
def test_named_modules(
name,
pt_module,
ms_module,
init_args,
init_kwargs,
inputs_args,
inputs_kwargs,
outputs_map,
dtype,
mode,
):
ms.set_context(mode=mode)

(
pt_model,
ms_model,
pt_dtype,
ms_dtype,
) = get_modules(pt_module, ms_module, dtype, *init_args, **init_kwargs)
pt_inputs_args, pt_inputs_kwargs, ms_inputs_args, ms_inputs_kwargs = generalized_parse_args(
pt_dtype, ms_dtype, *inputs_args, **inputs_kwargs
)

# set `hidden_dtype` if requiring, for some modules always compute in float
# precision and require specific `hidden_dtype` to cast before return
if "hidden_dtype" in inspect.signature(pt_model.forward).parameters:
pt_inputs_kwargs.update({"hidden_dtype": PT_DTYPE_MAPPING[pt_dtype]})
ms_inputs_kwargs.update({"hidden_dtype": MS_DTYPE_MAPPING[ms_dtype]})
with torch.no_grad():
pt_outputs = pt_model(*pt_inputs_args, **pt_inputs_kwargs)
ms_outputs = ms_model(*ms_inputs_args, **ms_inputs_kwargs)
# logger.info(f"ms:{ms_outputs}")
# logger.info(f"pt:{pt_outputs}" )
if outputs_map:
pt_outputs_n = []
ms_outputs_n = []
for pt_key, ms_idx in outputs_map.items():
pt_output = getattr(pt_outputs, pt_key)
ms_output = ms_outputs[ms_idx]
if isinstance(pt_output, (list, tuple)):
pt_outputs_n += list(pt_output)
ms_outputs_n += list(ms_output)
else:
pt_outputs_n.append(pt_output)
ms_outputs_n.append(ms_output)
diffs = compute_diffs(pt_outputs_n, ms_outputs_n)
else:
diffs = compute_diffs(pt_outputs, ms_outputs)
logger.info(f"Differences: {diffs}")
THRESHOLD = DTYPE_AND_THRESHOLDS[ms_dtype]
assert (np.array(diffs) < THRESHOLD).all(), (
f"ms_dtype: {ms_dtype}, pt_type: {pt_dtype}, "
f"Outputs({np.array(diffs).tolist()}) has diff bigger than {THRESHOLD}"
)

0 comments on commit b9ba243

Please sign in to comment.