Skip to content

Commit

Permalink
Simple unet training (#199)
Browse files Browse the repository at this point in the history
* add cg function in base

* add test cg

* fix cg function 1

* some changes

* fix minore : import and style

* first draft simple unet

* new draft

* reduce artifacts of radical traj

* minore

* minore

* style

* change traj and norm

* clean in a jupyter , fix error

* styles

* rm cg stuff, fix more

* add fastmri import

* \!docs_build

* fix ref

* rename and move

* syntaxe fix

* try differente lr

* \!docs_build

* Updates to trajectory

* \!docs_build finalizing changes

---------

Co-authored-by: Lena OUDJMAN <[email protected]>
Co-authored-by: Chaithya G R <[email protected]>
  • Loading branch information
3 people authored Nov 13, 2024
1 parent 19e117b commit 14c2738
Show file tree
Hide file tree
Showing 2 changed files with 227 additions and 1 deletion.
2 changes: 1 addition & 1 deletion .github/workflows/test-ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,7 @@ jobs:
run: |
python -m pip install --upgrade pip
python -m pip install -e .[test,dev]
python -m pip install finufft pooch brainweb-dl torch
python -m pip install finufft pooch brainweb-dl torch fastmri
- name: Install GPU related interfaces
run: |
Expand Down
226 changes: 226 additions & 0 deletions examples/GPU/example_fastMRI_UNet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
# %%
r"""
==================
Simple UNet model.
==================
This model is a simplified version of the U-Net architecture,
which is widely used for image segmentation tasks.
This is implemented in the proprietary FASTMRI package [fastmri]_.
The U-Net model consists of an encoder (downsampling path) and
a decoder (upsampling path) with skip connections between corresponding
layers in the encoder and decoder.
These skip connections help in retaining spatial information
that is lost during the downsampling process.
The primary purpose of this model is to perform image reconstruction tasks,
specifically for MRI images.
It takes an input MRI image and reconstructs it to improve the image quality
or to recover missing parts of the image.
This implementation of the UNet model was pulled from the FastMRI Facebook
repository, which is a collaborative research project aimed at advancing
the field of medical imaging using machine learning techniques.
.. math::
\mathbf{\hat{x}} = \mathrm{arg} \min_{\mathbf{x}} || \mathcal{U}_\mathbf{\theta}(\mathbf{y}) - \mathbf{x} ||_2^2
where:
- \( \mathbf{\hat{x}} \) is the reconstructed MRI image,
- \( \mathbf{x} \) is the ground truth image,
- \( \mathbf{y} \) is the input MRI image (e.g., k-space data),
- \( \mathcal{U}_\mathbf{\theta} \) is the U-Net model parameterized by \( \theta \).
.. warning::
We train on a single image here. In practice, this should be done on a database like fastMRI [fastmri]_.
"""

# %%
# Imports
import os
from pathlib import Path
import shutil
import brainweb_dl as bwdl
import matplotlib.pyplot as plt
import numpy as np
import torch
from tqdm import tqdm
import time
import joblib
from PIL import Image
import tempfile as tmp

from fastmri.models import Unet
from mrinufft import get_operator
from mrinufft.trajectories import initialize_2D_cones

# %%
# Setup a simple class for the U-Net model


class Model(torch.nn.Module):
"""Model for MRI reconstruction using a U-Net."""

def __init__(self, initial_trajectory):
super().__init__()
self.operator = get_operator("gpunufft", wrt_data=True)(
initial_trajectory,
shape=(256, 256),
density=True,
squeeze_dims=False,
)
self.unet = Unet(in_chans=1, out_chans=1, chans=32, num_pool_layers=4)

def forward(self, kspace):
"""Forward pass of the model."""
image = self.operator.adj_op(kspace)
recon = self.unet(image.float()).abs()
recon /= torch.mean(recon)
return recon


# %%
# Utility function to plot the state of the model
def plot_state(axs, mri_2D, traj, recon, loss=None, save_name=None):
"""Image plotting function.
Plot the original MRI image, the trajectory, the reconstructed image,
and the loss curve (if provided). Saves the plot if a filename is provided.
Parameters
----------
axs (numpy array): Array of matplotlib axes to plot on.
mri_2D (torch.Tensor): Original MRI image.
traj : Trajectory.
recon (torch.Tensor): Reconstructed image after training.
loss (list, optional): List of loss values to plot. Defaults to None.
save_name (str, optional): Filename to save the plot. Defaults to None.
"""
axs = axs.flatten()
axs[0].imshow(np.abs(mri_2D[0]), cmap="gray")
axs[0].axis("off")
axs[0].set_title("MR Image")
axs[1].scatter(*traj.T, s=0.5)
axs[1].set_title("Trajectory")
axs[2].imshow(np.abs(recon[0][0].detach().cpu().numpy()), cmap="gray")
axs[2].axis("off")
axs[2].set_title("Reconstruction")
if loss is not None:
axs[3].plot(loss)
axs[3].grid("on")
axs[3].set_title("Loss")
if save_name is not None:
plt.savefig(save_name, bbox_inches="tight")
plt.close()
else:
plt.show()


# %%
# Setup Inputs (models, trajectory and image)
init_traj = initialize_2D_cones(32, 256).reshape(-1, 2).astype(np.float32)
model = Model(init_traj)
model.eval()

# %%
# Get the image on which we will train our U-Net Model
mri_2D = torch.Tensor(np.flipud(bwdl.get_mri(4, "T1")[80, ...]).astype(np.complex64))[
None
]
mri_2D = mri_2D / torch.mean(mri_2D)
kspace_mri_2D = model.operator.op(mri_2D)

# Before training, here is the simple reconstruction we have using a
# density compensated adjoint.
dc_adjoint = model.operator.adj_op(kspace_mri_2D)
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
plot_state(axs, mri_2D, init_traj, dc_adjoint)


# %%
# Start training loop
epoch = 100
optimizer = torch.optim.RAdam(model.parameters(), lr=1e-3)
losses = [] # Store the loss values and create an animation
image_files = [] # Store the images to create a gif
model.train()

with tqdm(range(epoch), unit="steps") as tqdms:
for i in tqdms:
out = model(kspace_mri_2D) # Forward pass

loss = torch.nn.functional.l1_loss(out, mri_2D[None]) # Compute loss
tqdms.set_postfix({"loss": loss.item()}) # Update progress bar
losses.append(loss.item()) # Store loss value

optimizer.zero_grad() # Zero gradients
loss.backward() # Backward pass
optimizer.step() # Update weights

# Generate images for gif
hashed = joblib.hash((i, "learn_traj", time.time()))
filename = f"{tmp.NamedTemporaryFile().name}.png"
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
plot_state(
axs,
mri_2D,
init_traj,
out,
losses,
save_name=filename,
)
image_files.append(filename)


# Make a GIF of all images.
imgs = [Image.open(img) for img in image_files]
imgs[0].save(
"mrinufft_learn_unet.gif",
save_all=True,
append_images=imgs[1:],
optimize=False,
duration=2,
loop=0,
)
# sphinx_gallery_start_ignore
# Cleanup
for f in image_files:
try:
os.remove(f)
except OSError:
continue
# don't raise errors from pytest.
# This will only be executed for the sphinx gallery stuff

try:
final_dir = (
Path(os.getcwd()).parent.parent
/ "docs"
/ "generated"
/ "autoexamples"
/ "GPU"
/ "images"
)
shutil.copyfile("mrinufft_learn_Unet.gif", final_dir / "mrinufft_learn_Unet.gif")
except FileNotFoundError:
pass
# sphinx_gallery_end_ignore
# %%
# Reconstruction from partially trained U-Net model
model.eval()
new_recon = model(kspace_mri_2D)
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
plot_state(axs, mri_2D, init_traj, new_recon, losses)
plt.show()

# %%
# References
# ==========
#
# .. [fastmri] O. Ronneberger, P. Fischer, and Thomas Brox. U-net: Convolutional networks
# for biomedical image segmentation. In International Conference on Medical
# image computing and computer-assisted intervention, pages 234–241.
# Springer, 2015.
# https://github.com/facebookresearch/fastMRI/blob/main/fastmri/models/unet.py

0 comments on commit 14c2738

Please sign in to comment.