-
Notifications
You must be signed in to change notification settings - Fork 181
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
101 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,66 +1,115 @@ | ||
# -*- coding: utf-8 -*- | ||
from huggingface_hub import create_repo | ||
from huggingface_hub import HfApi, snapshot_download, hf_hub_download | ||
import os | ||
|
||
from __future__ import division | ||
from __future__ import print_function | ||
deeppurpose_repo = [ | ||
'hERG_Karim-Morgan', | ||
'hERG_Karim-CNN', | ||
'hERG_Karim-AttentiveFP', | ||
'BBB_Martins-AttentiveFP', | ||
'BBB_Martins-Morgan', | ||
'BBB_Martins-CNN', | ||
'CYP3A4_Veith-Morgan', | ||
'CYP3A4_Veith-CNN', | ||
'CYP3A4_Veith-AttentiveFP', | ||
] | ||
|
||
import os | ||
import sys | ||
model_hub = ["Geneformer", "scGPT"] | ||
|
||
import unittest | ||
import shutil | ||
import pytest | ||
|
||
# temporary solution for relative imports in case TDC is not installed | ||
# if TDC is installed, no need to use the following line | ||
sys.path.append( | ||
os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))) | ||
# TODO: add verification for the generation other than simple integration | ||
class tdc_hf_interface: | ||
''' | ||
Example use cases: | ||
# initialize an interface object with HF repo name | ||
tdc_hf_herg = tdc_hf_interface("hERG_Karim-Morgan") | ||
# upload folder/files to this repo | ||
tdc_hf_herg.upload('./Morgan_herg_karim_optimal') | ||
# load deeppurpose model from this repo | ||
dp_model = tdc_hf_herg.load_deeppurpose('./data') | ||
dp_model.predict(XXX) | ||
''' | ||
|
||
def __init__(self, repo_name): | ||
self.repo_id = "tdc/" + repo_name | ||
try: | ||
self.model_name = repo_name.split('-')[1] | ||
except: | ||
self.model_name = repo_name | ||
|
||
class TestHF(unittest.TestCase): | ||
def upload(self, folder_path): | ||
create_repo(repo_id=self.repo_id) | ||
api = HfApi() | ||
api.upload_folder(folder_path=folder_path, | ||
path_in_repo="model", | ||
repo_id=self.repo_id, | ||
repo_type="model") | ||
|
||
def setUp(self): | ||
print(os.getcwd()) | ||
pass | ||
def file_download(self, save_path, filename): | ||
model_ckpt = hf_hub_download(repo_id=self.repo_id, | ||
filename=filename, | ||
cache_dir=save_path) | ||
|
||
@pytest.mark.skip( | ||
reason="This test is skipped due to deeppurpose installation dependency" | ||
) | ||
@unittest.skip(reason="DeepPurpose") | ||
def test_hf_load_predict(self): | ||
from tdc.single_pred import Tox | ||
data = Tox(name='herg_karim') | ||
def repo_download(self, save_path): | ||
snapshot_download(repo_id=self.repo_id, cache_dir=save_path) | ||
|
||
from tdc import tdc_hf_interface | ||
tdc_hf = tdc_hf_interface("hERG_Karim-CNN") | ||
# load deeppurpose model from this repo | ||
dp_model = tdc_hf.load_deeppurpose('./data') | ||
tdc_hf.predict_deeppurpose(dp_model, ['CC(=O)NC1=CC=C(O)C=C1']) | ||
def load(self): | ||
if self.model_name not in model_hub: | ||
raise Exception("this model is not in the TDC model hub GH repo.") | ||
elif self.model_name == "Geneformer": | ||
from transformers import AutoModelForMaskedLM | ||
model = AutoModelForMaskedLM.from_pretrained( | ||
"ctheodoris/Geneformer") | ||
return model | ||
elif self.model_name == "scGPT": | ||
from transformers import AutoModel | ||
model = AutoModel.from_pretrained("tdc/scGPT") | ||
return model | ||
raise Exception("Not implemented yet!") | ||
|
||
def test_hf_transformer(self): | ||
from tdc import tdc_hf_interface | ||
# from transformers import Pipeline | ||
from transformers import BertForMaskedLM as BertModel | ||
geneformer = tdc_hf_interface("Geneformer") | ||
model = geneformer.load() | ||
# assert isinstance(pipeline, Pipeline) | ||
assert isinstance(model, BertModel), type(model) | ||
def load_deeppurpose(self, save_path): | ||
if self.repo_id[4:] in deeppurpose_repo: | ||
save_path = save_path + '/' + self.repo_id[4:] | ||
if not os.path.exists(save_path): | ||
os.mkdir(save_path) | ||
self.file_download(save_path, "model/model.pt") | ||
self.file_download(save_path, "model/config.pkl") | ||
|
||
# def test_hf_load_new_pytorch_standard(self): | ||
# from tdc import tdc_hf_interface | ||
# # from tdc.resource.dataloader import DataLoader | ||
# # data = DataLoader(name="pinnacle_dti") | ||
# tdc_hf = tdc_hf_interface("mli-PINNACLE") | ||
# dp_model = tdc_hf.load() | ||
# assert dp_model is not None | ||
save_path = save_path + '/models--tdc--' + self.repo_id[ | ||
4:] + '/blobs/' | ||
file_name1 = save_path + os.listdir(save_path)[0] | ||
file_name2 = save_path + os.listdir(save_path)[1] | ||
|
||
def tearDown(self): | ||
try: | ||
print(os.getcwd()) | ||
shutil.rmtree(os.path.join(os.getcwd(), "data")) | ||
except: | ||
pass | ||
if os.path.getsize(file_name1) > os.path.getsize(file_name2): | ||
model_file, config_file = file_name1, file_name2 | ||
else: | ||
config_file, model_file = file_name1, file_name2 | ||
|
||
os.rename(model_file, save_path + 'model.pt') | ||
os.rename(config_file, save_path + 'config.pkl') | ||
try: | ||
from DeepPurpose import CompoundPred | ||
except: | ||
raise ValueError( | ||
"Please install DeepPurpose package following https://github.com/kexinhuang12345/DeepPurpose#installation" | ||
) | ||
|
||
net = CompoundPred.model_pretrained(path_dir=save_path) | ||
return net | ||
else: | ||
raise ValueError("This repo does not host a DeepPurpose model!") | ||
|
||
if __name__ == "__main__": | ||
unittest.main() | ||
def predict_deeppurpose(self, model, drugs): | ||
try: | ||
from DeepPurpose import utils | ||
except: | ||
raise ValueError( | ||
"Please install DeepPurpose package following https://github.com/kexinhuang12345/DeepPurpose#installation" | ||
) | ||
if self.model_name == 'AttentiveFP': | ||
self.model_name = 'DGL_' + self.model_name | ||
X_pred = utils.data_process(X_drug=drugs, | ||
y=[0] * len(drugs), | ||
drug_encoding=self.model_name, | ||
split_method='no_split') | ||
y_pred = model.predict(X_pred)[0] | ||
return y_pred |