-
Notifications
You must be signed in to change notification settings - Fork 343
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
The main focus of this PR is to port some interfaces from ORM and transform them from an object-oriented form to a functional form. As these are new interfaces of MilvusClient, certain parameters and return values have been modified compared to the original ORM interfaces. Signed-off-by: zhenshan.cao <[email protected]>
- Loading branch information
Showing
18 changed files
with
1,165 additions
and
283 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import time | ||
import numpy as np | ||
from pymilvus import ( | ||
MilvusClient, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
dim = 8 | ||
collection_name = "hello_milvus" | ||
milvus_client = MilvusClient("http://localhost:19530") | ||
milvus_client.drop_collection(collection_name) | ||
milvus_client.create_collection(collection_name, dim, consistency_level="Strong", metric_type="L2", auto_id=True) | ||
|
||
collection_name2 = "hello_milvus2" | ||
milvus_client.drop_collection(collection_name2) | ||
milvus_client.create_collection(collection_name2, dim, consistency_level="Strong", metric_type="L2", auto_id=True) | ||
|
||
|
||
print("collections:", milvus_client.list_collections()) | ||
|
||
desc_c1 = milvus_client.describe_collection(collection_name) | ||
print(f"{collection_name} :", desc_c1) | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
|
||
rows = [ | ||
{"vector": rng.random((1, dim))[0], "a": 100}, | ||
{"vector": rng.random((1, dim))[0], "b": 200}, | ||
{"vector": rng.random((1, dim))[0], "c": 300}, | ||
] | ||
|
||
print(fmt.format(f"Start inserting entities to {collection_name}")) | ||
insert_result = milvus_client.insert(collection_name, rows) | ||
print(insert_result) | ||
|
||
rows = [ | ||
{"vector": rng.random((1, dim))[0], "d": 400}, | ||
{"vector": rng.random((1, dim))[0], "e": 500}, | ||
{"vector": rng.random((1, dim))[0], "f": 600}, | ||
] | ||
|
||
print(fmt.format(f"Start inserting entities to {collection_name2}")) | ||
insert_result2 = milvus_client.insert(collection_name2, rows) | ||
print(insert_result2) | ||
|
||
alias = "alias_hello_milvus" | ||
milvus_client.create_alias(collection_name, alias) | ||
|
||
assert milvus_client.describe_collection(alias) == milvus_client.describe_collection(collection_name) | ||
|
||
milvus_client.alter_alias(collection_name2, alias) | ||
assert milvus_client.describe_collection(alias) == milvus_client.describe_collection(collection_name2) | ||
|
||
query_results = milvus_client.query(alias, filter= "f == 600") | ||
print("results of query 'f == 600' is ") | ||
for ret in query_results: | ||
print(ret) | ||
|
||
|
||
milvus_client.drop_alias(alias) | ||
has_collection = milvus_client.has_collection(alias) | ||
assert not has_collection | ||
has_collection = milvus_client.has_collection(collection_name2) | ||
assert has_collection | ||
|
||
milvus_client.drop_collection(collection_name) | ||
milvus_client.drop_collection(collection_name2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import time | ||
import numpy as np | ||
from pymilvus import ( | ||
MilvusClient, | ||
DataType | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
dim = 8 | ||
collection_name = "hello_milvus" | ||
milvus_client = MilvusClient("http://localhost:19530") | ||
|
||
has_collection = milvus_client.has_collection(collection_name, timeout=5) | ||
if has_collection: | ||
milvus_client.drop_collection(collection_name) | ||
|
||
schema = milvus_client.create_schema(enable_dynamic_field=True) | ||
schema.add_field("id", DataType.INT64, is_primary=True) | ||
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim) | ||
schema.add_field("title", DataType.VARCHAR, max_length=64) | ||
|
||
|
||
index_params = milvus_client.prepare_index_params() | ||
index_params.add_index(field_name = "embeddings", metric_type="L2") | ||
milvus_client.create_collection(collection_name, schema=schema, index_params=index_params, consistency_level="Strong") | ||
|
||
print(fmt.format(" all collections ")) | ||
print(milvus_client.list_collections()) | ||
|
||
print(fmt.format(f"schema of collection {collection_name}")) | ||
print(milvus_client.describe_collection(collection_name)) | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
rows = [ | ||
{"id": 1, "embeddings": rng.random((1, dim))[0], "a": 100, "title": "t1"}, | ||
{"id": 2, "embeddings": rng.random((1, dim))[0], "b": 200, "title": "t2"}, | ||
{"id": 3, "embeddings": rng.random((1, dim))[0], "c": 300, "title": "t3"}, | ||
{"id": 4, "embeddings": rng.random((1, dim))[0], "d": 400, "title": "t4"}, | ||
{"id": 5, "embeddings": rng.random((1, dim))[0], "e": 500, "title": "t5"}, | ||
{"id": 6, "embeddings": rng.random((1, dim))[0], "f": 600, "title": "t6"}, | ||
] | ||
|
||
print(fmt.format("Start inserting entities")) | ||
insert_result = milvus_client.insert(collection_name, rows) | ||
print(fmt.format("Inserting entities done")) | ||
print(insert_result) | ||
|
||
|
||
print(fmt.format("Start load collection ")) | ||
milvus_client.load_collection(collection_name) | ||
|
||
print(fmt.format("Start query by specifying primary keys")) | ||
query_results = milvus_client.query(collection_name, ids=[2]) | ||
print(query_results[0]) | ||
|
||
print(fmt.format("Start query by specifying filtering expression")) | ||
query_results = milvus_client.query(collection_name, filter= "f == 600 or title == 't2'") | ||
for ret in query_results: | ||
print(ret) | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
vectors_to_search = rng.random((1, dim)) | ||
|
||
print(fmt.format(f"Start search with retrieve serveral fields.")) | ||
result = milvus_client.search(collection_name, vectors_to_search, limit=3, output_fields=["pk", "a", "b"]) | ||
for hits in result: | ||
for hit in hits: | ||
print(f"hit: {hit}") | ||
|
||
milvus_client.drop_collection(collection_name) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import time | ||
import numpy as np | ||
from pymilvus import ( | ||
MilvusClient, | ||
DataType | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
dim = 8 | ||
collection_name = "hello_milvus" | ||
milvus_client = MilvusClient("http://localhost:19530") | ||
|
||
has_collection = milvus_client.has_collection(collection_name, timeout=5) | ||
if has_collection: | ||
milvus_client.drop_collection(collection_name) | ||
|
||
schema = milvus_client.create_schema(enable_dynamic_field=True) | ||
schema.add_field("id", DataType.INT64, is_primary=True) | ||
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim) | ||
schema.add_field("title", DataType.VARCHAR, max_length=64) | ||
|
||
# collection is not loaded after creation | ||
milvus_client.create_collection(collection_name, schema=schema, consistency_level="Strong") | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
rows = [ | ||
{"id": 1, "embeddings": rng.random((1, dim))[0], "a": 100, "title": "t1"}, | ||
{"id": 2, "embeddings": rng.random((1, dim))[0], "b": 200, "title": "t2"}, | ||
{"id": 3, "embeddings": rng.random((1, dim))[0], "c": 300, "title": "t3"}, | ||
{"id": 4, "embeddings": rng.random((1, dim))[0], "d": 400, "title": "t4"}, | ||
{"id": 5, "embeddings": rng.random((1, dim))[0], "e": 500, "title": "t5"}, | ||
{"id": 6, "embeddings": rng.random((1, dim))[0], "f": 600, "title": "t6"}, | ||
] | ||
|
||
print(fmt.format("Start inserting entities")) | ||
insert_result = milvus_client.insert(collection_name, rows) | ||
print(fmt.format("Inserting entities done")) | ||
print(insert_result) | ||
|
||
index_params = milvus_client.prepare_index_params() | ||
index_params.add_index(field_name = "embeddings", metric_type="L2") | ||
index_params.add_index(field_name = "title", index_type = "TRIE", index_name="my_trie") | ||
|
||
print(fmt.format("Start create index")) | ||
milvus_client.create_index(collection_name, index_params) | ||
|
||
|
||
index_names = milvus_client.list_indexes(collection_name) | ||
print(f"index names for {collection_name}:", index_names) | ||
for index_name in index_names: | ||
index_info = milvus_client.describe_index(collection_name, index_name=index_name) | ||
print(f"index info for index {index_name} is:", index_info) | ||
|
||
print(fmt.format("Start load collection")) | ||
milvus_client.load_collection(collection_name) | ||
|
||
print(fmt.format("Start query by specifying primary keys")) | ||
query_results = milvus_client.query(collection_name, ids=[2]) | ||
print(query_results[0]) | ||
|
||
print(fmt.format("Start query by specifying filtering expression")) | ||
query_results = milvus_client.query(collection_name, filter= "f == 600 or title == 't2'") | ||
for ret in query_results: | ||
print(ret) | ||
|
||
vectors_to_search = rng.random((1, dim)) | ||
print(fmt.format(f"Start search with retrieve serveral fields.")) | ||
result = milvus_client.search(collection_name, vectors_to_search, limit=3, output_fields=["title"]) | ||
for hits in result: | ||
for hit in hits: | ||
print(f"hit: {hit}") | ||
|
||
|
||
|
||
field_index_names = milvus_client.list_indexes(collection_name, field_name = "embeddings") | ||
print(f"index names for {collection_name}`s field embeddings:", field_index_names) | ||
|
||
try: | ||
milvus_client.drop_index(collection_name, "my_trie") | ||
except Exception as e: | ||
print(f"cacthed {e}") | ||
|
||
milvus_client.release_collection(collection_name) | ||
|
||
milvus_client.drop_index(collection_name, "my_trie") | ||
|
||
milvus_client.drop_collection(collection_name) |
Oops, something went wrong.