Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update torch.norm to torch.linalg.norm and torch.linalg.vector_norm #6931

Merged
merged 17 commits into from
Jan 21, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion deepspeed/runtime/comm/compressed.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_erro

compensated_server_m.add_(server_error)

server_scale = torch.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel())
server_scale = torch.linalg.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel())

server_error.set_(compensated_server_m -
server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))
Expand Down
2 changes: 1 addition & 1 deletion deepspeed/runtime/comm/hccl.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_erro

compensated_server_m.add_(server_error)

server_scale = torch.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel())
server_scale = torch.linalg.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel())

server_error.set_(compensated_server_m -
server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))
Expand Down
2 changes: 1 addition & 1 deletion deepspeed/runtime/fp16/onebit/lamb.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ def step(self, closure=None, grads=None):
# This is used to reduce compression error during compression stage.
momentum_scales = []
for group in self.param_groups:
momentum_scales.append([(torch.linalg.norm(self.state[p]['exp_avg']) /
momentum_scales.append([(torch.linalg.vector_norm(self.state[p]['exp_avg']) /
np.sqrt(torch.numel(self.state[p]['exp_avg']))).item()
for p in group['params']])
united_scale = sum([sum(x) for x in momentum_scales]) / sum([len(x) for x in momentum_scales])
Expand Down
2 changes: 1 addition & 1 deletion deepspeed/runtime/zero/stage3.py
Original file line number Diff line number Diff line change
Expand Up @@ -2101,7 +2101,7 @@ def step(self, closure=None):
return

norm_groups = self._get_norm_groups()
scaled_global_grad_norm = torch.linalg.norm(torch.stack(norm_groups))
scaled_global_grad_norm = torch.linalg.vector_norm(torch.stack(norm_groups))

# Stash unscaled gradient norm
self._global_grad_norm = scaled_global_grad_norm / self.loss_scale
Expand Down
5 changes: 3 additions & 2 deletions deepspeed/runtime/zero/stage_1_and_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -1691,7 +1691,8 @@ def get_grad_norm_direct(self, gradients, params, norm_type=2):
continue
if is_model_parallel_parameter(p) or (self.model_parallel_rank == 0):
all_norms.append(
torch.norm(g.data.double().detach(), norm_type).to(get_accelerator().current_device_name()))
torch.linalg.vector_norm(g.data.double().detach(),
ord=norm_type).to(get_accelerator().current_device_name()))
if len(all_norms) > 0:
total_norm = torch.stack(all_norms).square().sum().float()
else:
Expand Down Expand Up @@ -1795,7 +1796,7 @@ def scaled_global_norm(self, norm_type=2):
self._average_expert_grad_norms(norm_groups)

# calculating L2 norm
return torch.norm(torch.stack(norm_groups), p=norm_type)
return torch.linalg.vector_norm(torch.stack(norm_groups), ord=norm_type)

def get_bit16_param_group(self, group_no):
bit16_partitions = self.parallel_partitioned_bit16_groups[group_no]
Expand Down