Skip to content

Commit

Permalink
[Accelerator] Tecorgin SDAA support
Browse files Browse the repository at this point in the history
  • Loading branch information
siqi committed Dec 11, 2024
1 parent 06f1d36 commit c837db6
Show file tree
Hide file tree
Showing 7 changed files with 468 additions and 1 deletion.
19 changes: 18 additions & 1 deletion accelerator/real_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
except ImportError as e:
dsa2 = None

SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu']
SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu', 'sdaa']

ds_accelerator = None

Expand Down Expand Up @@ -80,6 +80,12 @@ def get_accelerator():
except ImportError as e:
raise ValueError(f"NPU_Accelerator requires torch_npu, which is not installed on this system.")
pass
elif accelerator_name == "sdaa":
try:
import torch_sdaa # noqa: F401 # type: ignore
except ImportError as e:
raise ValueError(f"SDAA_Accelerator requires torch_sdaa, which is not installed on this system.")
pass
elif accelerator_name == "mps":
try:
import torch.mps
Expand Down Expand Up @@ -138,6 +144,13 @@ def get_accelerator():
accelerator_name = "npu"
except ImportError as e:
pass
if accelerator_name is None:
try:
import torch_sdaa # noqa: F401,F811 # type: ignore

accelerator_name = "sdaa"
except ImportError as e:
pass
if accelerator_name is None:
try:
import torch.mps
Expand Down Expand Up @@ -202,6 +215,10 @@ def get_accelerator():
from .npu_accelerator import NPU_Accelerator

ds_accelerator = NPU_Accelerator()
elif accelerator_name == "sdaa":
from .sdaa_accelerator import SDAA_Accelerator

ds_accelerator = SDAA_Accelerator()
elif accelerator_name == "mps":
from .mps_accelerator import MPS_Accelerator

Expand Down
306 changes: 306 additions & 0 deletions accelerator/sdaa_accelerator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import importlib
import inspect
import functools
import os
import pkgutil

from .abstract_accelerator import DeepSpeedAccelerator
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
try:
import torch.sdaa
except ImportError:
pass


class SDAA_Accelerator(DeepSpeedAccelerator):

def __init__(self):
self._name = 'sdaa'
self._communication_backend_name = 'tccl'
self._compile_backend = "inductor"
self.class_dict = None

def is_synchronized_device(self):
return False

def use_host_timers(self):
return self.is_synchronized_device()

def resolves_data_dependency(self):
return self.is_synchronized_device()

def handles_memory_backpressure(self):
return self.is_synchronized_device()

# Device APIs
def device_name(self, device_index=None):
if device_index is None:
return 'sdaa'
return 'sdaa:{}'.format(device_index)

def device(self, device_index=None):
return torch.sdaa.device(device_index)

def set_device(self, device_index):
torch.sdaa.set_device(device_index)

def current_device(self):
return torch.sdaa.current_device()

def current_device_name(self):
return 'sdaa:{}'.format(torch.sdaa.current_device())

def device_count(self):
return torch.sdaa.device_count()

def synchronize(self, device_index=None):
return torch.sdaa.synchronize(device_index)

# RNG APIs
def random(self):
return torch.random

def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.sdaa.set_rng_state(new_state)

return torch.sdaa.set_rng_state(new_state, device_index)

def get_rng_state(self, device_index=None):
if device_index is None:
return torch.sdaa.get_rng_state()

return torch.sdaa.get_rng_state(device_index)

def manual_seed(self, seed):
return torch.sdaa.manual_seed(seed)

def manual_seed_all(self, seed):
return torch.sdaa.manual_seed_all(seed)

def initial_seed(self):
return torch.sdaa.initial_seed()

def default_generator(self, device_index):
return torch.sdaa.default_generators[device_index]

# Streams/Events
@property
def Stream(self):
return torch.sdaa.Stream

def stream(self, stream):
return torch.sdaa.stream(stream)

def current_stream(self, device_index=None):
return torch.sdaa.current_stream(device_index)

def default_stream(self, device_index=None):
return torch.sdaa.default_stream(device_index)

@property
def Event(self):
return torch.sdaa.Event

# Memory management
def empty_cache(self):
return torch.sdaa.empty_cache()

def memory_allocated(self, device_index=None):
return torch.sdaa.memory_allocated(device_index)

def max_memory_allocated(self, device_index=None):
return torch.sdaa.max_memory_allocated(device_index)

def reset_max_memory_allocated(self, device_index=None):
return torch.sdaa.reset_max_memory_allocated(device_index)

def memory_cached(self, device_index=None):
return torch.sdaa.memory_cached(device_index)

def max_memory_cached(self, device_index=None):
return torch.sdaa.max_memory_cached(device_index)

def reset_max_memory_cached(self, device_index=None):
return torch.sdaa.reset_max_memory_cached(device_index)

def memory_stats(self, device_index=None):
if hasattr(torch.sdaa, 'memory_stats'):
return torch.sdaa.memory_stats(device_index)

def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.sdaa, 'reset_peak_memory_stats'):
return torch.sdaa.reset_peak_memory_stats(device_index)

def memory_reserved(self, device_index=None):
if hasattr(torch.sdaa, 'memory_reserved'):
return torch.sdaa.memory_reserved(device_index)

def max_memory_reserved(self, device_index=None):
if hasattr(torch.sdaa, 'max_memory_reserved'):
return torch.sdaa.max_memory_reserved(device_index)

def total_memory(self, device_index=None):
return torch.sdaa.get_device_properties(device_index).total_memory

def available_memory(self, device_index=None):
return self.total_memory(device_index) - self.memory_allocated(device_index)

# Data types
def is_bf16_supported(self):
return torch.sdaa.is_bf16_supported()

def is_fp16_supported(self):
return True

def supported_dtypes(self):
supported_dtypes = [torch.float]
if self.is_fp16_supported():
supported_dtypes.append(torch.half)
if self.is_bf16_supported():
supported_dtypes.append(torch.bfloat16)
return supported_dtypes

# Misc
def amp(self):
if hasattr(torch.sdaa, 'amp'):
return torch.sdaa.amp
return None

def is_available(self):
return torch.sdaa.is_available()

def range_push(self, msg):
return

def range_pop(self):
return

def lazy_call(self, callback):
return torch.sdaa._lazy_call(callback)

def communication_backend_name(self):
return self._communication_backend_name

def is_triton_supported(self):
return False

# Graph operations
def create_graph(self):
return None

def capture_to_graph(self, graph, pool=None, stream=None):
from deepspeed.runtime.utils import noop_context
return noop_context()

def replay_graph(self, graph):
return

# Tensor operations

@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='sdaa')

@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device='sdaa')

@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device='sdaa')

@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device='sdaa')

@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device='sdaa')

@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device='sdaa')

@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device='sdaa')

def pin_memory(self, tensor, align_bytes=1):
return tensor.pin_memory()

def is_pinned(self, tensor):
return tensor.is_pinned()

def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('sdaa:'):
return True
else:
return False

def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder.sdaa"
except ImportError:
return "deepspeed.ops.op_builder.sdaa"


def _lazy_init_class_dict(self):
if self.class_dict:
return

op_builder_module = importlib.import_module(self.op_builder_dir())

# get op builder class from op_builder/sdaa/__init__.py
self.class_dict = {}
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
self.class_dict[class_name] = class_obj


# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
builder_class = self.get_op_builder(class_name)
return builder_class()

# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return self.class_dict['NotImplementedBuilder']

def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension

def export_envs(self):
return ['NCCL','LD_LIBRARY', 'PATH']

def visible_devices_envs(self):
return ['SDAA_VISIBLE_DEVICES']

def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))

def get_compile_backend(self):
return self._compile_backend

def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")
9 changes: 9 additions & 0 deletions op_builder/sdaa/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
'''Copyright The Microsoft DeepSpeed Team'''

from .no_impl import NotImplementedBuilder
from .cpu_adam import CPUAdamBuilder
from .fused_adam import FusedAdamBuilder
34 changes: 34 additions & 0 deletions op_builder/sdaa/builder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
from op_builder.builder import OpBuilder
except ImportError:
from deepspeed.ops.op_builder.builder import OpBuilder


class SDAAOpBuilder(OpBuilder):

def builder(self):
from torch.utils.cpp_extension import CppExtension as ExtensionBuilder

compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())}

cpp_ext = ExtensionBuilder(name=self.absolute_name(),
sources=self.strip_empty_entries(self.sources()),
include_dirs=self.strip_empty_entries(self.include_paths()),
libraries=self.strip_empty_entries(self.libraries_args()),
extra_compile_args=compile_args)

return cpp_ext

def cxx_args(self):
return ['-O3', '-g', '-Wno-reorder']

def libraries_args(self):
return []
Loading

0 comments on commit c837db6

Please sign in to comment.