Skip to content

Commit

Permalink
Merge branch 'develop' into surreal-cofinality
Browse files Browse the repository at this point in the history
  • Loading branch information
sctfn committed Jan 29, 2025
2 parents a599e8b + dfbe10b commit 945626d
Show file tree
Hide file tree
Showing 5 changed files with 5,205 additions and 4,328 deletions.
9 changes: 9 additions & 0 deletions changes-set.txt
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,15 @@ DONE:
Date Old New Notes
27-Jan-25 --- --- Moved surreal cofinality theorems
from SF's mathbox to main set.mm
26-Jan-25 an2anr [same] Moved from PM's mathbox to main set.mm
26-Jan-25 ismhmd [same] Moved from SN's mathbox to main set.mm
26-Jan-25 ringcld [same] Moved from SN's mathbox to main set.mm
26-Jan-25 ablcmnd [same] Moved from SN's mathbox to main set.mm
26-Jan-25 ringabld [same] Moved from SN's mathbox to main set.mm
26-Jan-25 ringcmnd [same] Moved from SN's mathbox to main set.mm
26-Jan-25 pwsexpg [same] Moved from SN's mathbox to main set.mm
26-Jan-25 drnginvrcld [same] Moved from SN's mathbox to main set.mm
26-Jan-25 pwspjmhmmgpd [same] Moved from SN's mathbox to main set.mm
24-Jan-25 rextru [same] Moved from ZW's mathbox to main set.mm
19-Jan-25 --- --- Moved surreal cut and option theorems
from SF's mathbox to main set.mm
Expand Down
144 changes: 144 additions & 0 deletions constr.mm
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
$[ set.mm $]

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
Constructible numbers
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
This section defines the set of constructible points as complex numbers which
can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
intersections of circles and lines.

We initially define two sets:
<UL>
<LI>geometrically, by recursively adding the intersection points : this is
` Constr ` .</LI>
<LI>algebraically, by using field extensions : this is ` ConstrAlg ` . </LI>
</UL>

We then proceed by showing that those two sets are equal.

This construction is useful for proving the impossibility of doubling the
cube ( ~ imp2cube ), and of angle trisection ( ~ imp3ang )
$)

$( All algebraic numbers admit a minimal polynomial. $)
$( minplyeu $p |- ( ph -> E! p e. ( Monic1p ` E ) A. q e. ( Monic1p ` E ) ( -> p = q ) ) $)

$( Use infval $)
$( minplyf $)

$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Degree of a field extension
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

${
fldextdgirred.b $e |- B = ( Base ` F ) $.
fldextdgirred.0 $e |- .0. = ( 0g ` F ) $.
fldextdgirred.d $e |- D = ( deg1 ` F ) $.
fldextdgirred.o $e |- O = ( F evalSub1 E ) $.
fldextdgirred.m $e |- M = ( Poly1 ` F ) $.
fldextdgirred.k $e |- K = ( F |`s E ) $.
fldextdgirred.l $e |- L = ( F |`s ( F fldGen ( E u. { Z } ) ) ) $.
fldextdgirred.f $e |- ( ph -> F e. Field ) $.
fldextdgirred.e $e |- ( ph -> E e. ( SubDRing ` F ) ) $.
fldextdgirred.p $e |- ( ph -> P e. dom O ) $.
fldextdgirred.1 $e |- ( ph -> P e. ( Irred ` M ) ) $.
fldextdgirred.z $e |- ( ph -> Z e. ( B \ E ) ) $.
fldextdgirred.2 $e |- ( ph -> ( ( O ` P ) ` Z ) = .0. ) $.
$( If ` Z ` is the root of an irreducible polynomial ` P ` over a field
` K ` , then the degree of the field extension ` [ K [ Z ] : K ] ` is
the degree of the polynomial ` P ` . $)
fldextdgirred $p |- ( ph -> ( L [:] K ) = ( D ` P ) ) $= ? $.
$}


$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Quadratic field extensions
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

$c /FldExt2 $.

$( Extend class notation with the quadratic field extension relation. $)
cfldext2 $a class /FldExt2 $.

${
$d e f $.
$( Define the quadratic field extension relation. Quadratic field
extensions are field extensions of degree 2. $)
df-fldext2 $a |- /FldExt2 = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) = 2 ) } $.
$}


$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Chain
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

$c Chain $.

$( Extend class notation with the (finite) chain builder function. $)
cchn $a class Chain $.

${
$d r c n $.
$( Define the (finite) chain builder function. A chain is defined to be a
sequence of objects, whereas each object is in a given relation with the
next one. $)
df-chn $a |- Chain = ( r e. _V |-> { c e. Word dom r |
A. n e. ( dom c \ { 0 } ) ( c ` ( n - 1 ) ) r ( c ` n ) } ) $.
$}


$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Constructible points
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

$c Constr $.

$( Extend class notation with the set of geometrically constructible points. $)
cconstr $a class Constr $.

$( Define the set of geometrically constructible points, by recursively adding
the line-line, line-circle and circle-circle intersections constructions
using points in a previous iteration. $)
df-constr $a |- Constr = ( rec ( ( s e. _V |-> { x e. CC |
( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ -. ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = 0 )
\/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) )
\/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s E. t e. RR ( -. a = d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) )
} ) , { 0 , 1 } ) " _om ) $.

${
constrtow2.b $e |- B = ( Base ` F ) $.
constrtow2.q $e |- Q = ( CCfld |`s QQ ) $.
constrtow2.a $e |- ( ph -> A e. Constr ) $.
constrtow2.f $e |- ( ph -> F e. Field ) $.
constrtow2.1 $e |- ( ph -> A e. B ) $.
$( If an algebraically constructible point ` A ` is in a field ` F ` , then
there is a tower of quadratic field extensions from ` QQ ` to ` F ` . $)
constrtow2 $p |- ( ph -> E. t e. ( Chain ` `' /FldExt2 ) ( ( t ` 0 ) = Q
/\ ( lastS ` t ) = F ) ) $= ? $.
$}


$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Impossible constructions
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

$( Impossibility of doubling the cube. This is expressed by stating that the
cubic root of 2, which is the side length of a cube of volume ` 2 ` , is
not constructible. $)
imp2cube $p |- -. ( 2 ^c ( 1 / 3 ) ) e. Constr $= ? $.

$( Impossibility of trisecting angles. This is expressed by stating that the
cosine of an angle of ` ( _pi / 9 ) ` which would be the third of the
constructible angle ` ( _pi / 3 ) ` , is not constructible. $)
imp3ang $p |- -. ( cos ` ( _pi / 9 ) ) e. Constr $= ? $.
Loading

0 comments on commit 945626d

Please sign in to comment.