-
Notifications
You must be signed in to change notification settings - Fork 92
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Constructible numbers - initial idea (#4578)
* Constructible numbers - initial idea * Update constr.mm Co-authored-by: icecream17 <[email protected]> * Update constr.mm Co-authored-by: icecream17 <[email protected]> * Update constr.mm Co-authored-by: icecream17 <[email protected]> * Update constr.mm Co-authored-by: icecream17 <[email protected]> * Update constr.mm Co-authored-by: icecream17 <[email protected]> * Fix domain of polynomial Co-authored-by: icecream17 <[email protected]> * Indentation * Minimal polynomials * Fix definitional soundness check. * As per @savask remark * As per @avekens comments --------- Co-authored-by: icecream17 <[email protected]>
- Loading branch information
1 parent
08c7f65
commit 6a72b54
Showing
3 changed files
with
702 additions
and
132 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
$[ set.mm $] | ||
|
||
$( | ||
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# | ||
Constructible numbers | ||
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# | ||
This section defines the set of constructible points as complex numbers which | ||
can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking | ||
intersections of circles and lines. | ||
|
||
We initially define two sets: | ||
<UL> | ||
<LI>geometrically, by recursively adding the intersection points : this is | ||
` Constr ` .</LI> | ||
<LI>algebraically, by using field extensions : this is ` ConstrAlg ` . </LI> | ||
</UL> | ||
|
||
We then proceed by showing that those two sets are equal. | ||
|
||
This construction is useful for proving the impossibility of doubling the | ||
cube ( ~ imp2cube ), and of angle trisection ( ~ imp3ang ) | ||
$) | ||
|
||
$( All algebraic numbers admit a minimal polynomial. $) | ||
$( minplyeu $p |- ( ph -> E! p e. ( Monic1p ` E ) A. q e. ( Monic1p ` E ) ( -> p = q ) ) $) | ||
|
||
$( Use infval $) | ||
$( minplyf $) | ||
|
||
$( | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
Degree of a field extension | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
$) | ||
|
||
${ | ||
fldextdgirred.b $e |- B = ( Base ` F ) $. | ||
fldextdgirred.0 $e |- .0. = ( 0g ` F ) $. | ||
fldextdgirred.d $e |- D = ( deg1 ` F ) $. | ||
fldextdgirred.o $e |- O = ( F evalSub1 E ) $. | ||
fldextdgirred.m $e |- M = ( Poly1 ` F ) $. | ||
fldextdgirred.k $e |- K = ( F |`s E ) $. | ||
fldextdgirred.l $e |- L = ( F |`s ( F fldGen ( E u. { Z } ) ) ) $. | ||
fldextdgirred.f $e |- ( ph -> F e. Field ) $. | ||
fldextdgirred.e $e |- ( ph -> E e. ( SubDRing ` F ) ) $. | ||
fldextdgirred.p $e |- ( ph -> P e. dom O ) $. | ||
fldextdgirred.1 $e |- ( ph -> P e. ( Irred ` M ) ) $. | ||
fldextdgirred.z $e |- ( ph -> Z e. ( B \ E ) ) $. | ||
fldextdgirred.2 $e |- ( ph -> ( ( O ` P ) ` Z ) = .0. ) $. | ||
$( If ` Z ` is the root of an irreducible polynomial ` P ` over a field | ||
` K ` , then the degree of the field extension ` [ K [ Z ] : K ] ` is | ||
the degree of the polynomial ` P ` . $) | ||
fldextdgirred $p |- ( ph -> ( L [:] K ) = ( D ` P ) ) $= ? $. | ||
$} | ||
|
||
|
||
$( | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
Quadratic field extensions | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
$) | ||
|
||
$c /FldExt2 $. | ||
|
||
$( Extend class notation with the quadratic field extension relation. $) | ||
cfldext2 $a class /FldExt2 $. | ||
|
||
${ | ||
$d e f $. | ||
$( Define the quadratic field extension relation. Quadratic field | ||
extensions are field extensions of degree 2. $) | ||
df-fldext2 $a |- /FldExt2 = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) = 2 ) } $. | ||
$} | ||
|
||
|
||
$( | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
Chain | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
$) | ||
|
||
$c Chain $. | ||
|
||
$( Extend class notation with the (finite) chain builder function. $) | ||
cchn $a class Chain $. | ||
|
||
${ | ||
$d r c n $. | ||
$( Define the (finite) chain builder function. A chain is defined to be a | ||
sequence of objects, whereas each object is in a given relation with the | ||
next one. $) | ||
df-chn $a |- Chain = ( r e. _V |-> { c e. Word dom r | | ||
A. n e. ( dom c \ { 0 } ) ( c ` ( n - 1 ) ) r ( c ` n ) } ) $. | ||
$} | ||
|
||
|
||
$( | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
Constructible points | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
$) | ||
|
||
$c Constr $. | ||
|
||
$( Extend class notation with the set of geometrically constructible points. $) | ||
cconstr $a class Constr $. | ||
|
||
$( Define the set of geometrically constructible points, by recursively adding | ||
the line-line, line-circle and circle-circle intersections constructions | ||
using points in a previous iteration. $) | ||
df-constr $a |- Constr = ( rec ( ( s e. _V |-> { x e. CC | | ||
( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ -. ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = 0 ) | ||
\/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) | ||
\/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s E. t e. RR ( -. a = d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) | ||
} ) , { 0 , 1 } ) " _om ) $. | ||
|
||
${ | ||
constrtow2.b $e |- B = ( Base ` F ) $. | ||
constrtow2.q $e |- Q = ( CCfld |`s QQ ) $. | ||
constrtow2.a $e |- ( ph -> A e. Constr ) $. | ||
constrtow2.f $e |- ( ph -> F e. Field ) $. | ||
constrtow2.1 $e |- ( ph -> A e. B ) $. | ||
$( If an algebraically constructible point ` A ` is in a field ` F ` , then | ||
there is a tower of quadratic field extensions from ` QQ ` to ` F ` . $) | ||
constrtow2 $p |- ( ph -> E. t e. ( Chain ` `' /FldExt2 ) ( ( t ` 0 ) = Q | ||
/\ ( lastS ` t ) = F ) ) $= ? $. | ||
$} | ||
|
||
|
||
$( | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
Impossible constructions | ||
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | ||
$) | ||
|
||
$( Impossibility of doubling the cube. This is expressed by stating that the | ||
cubic root of 2, which is the side length of a cube of volume ` 2 ` , is | ||
not constructible. $) | ||
imp2cube $p |- -. ( 2 ^c ( 1 / 3 ) ) e. Constr $= ? $. | ||
|
||
$( Impossibility of trisecting angles. This is expressed by stating that the | ||
cosine of an angle of ` ( _pi / 9 ) ` which would be the third of the | ||
constructible angle ` ( _pi / 3 ) ` , is not constructible. $) | ||
imp3ang $p |- -. ( cos ` ( _pi / 9 ) ) e. Constr $= ? $. |
Oops, something went wrong.