Skip to content

Commit

Permalink
rewrite restricted quantifiers # 7 (#4523)
Browse files Browse the repository at this point in the history
* move forgotten rsp2e

* move ax-10 only theorems

* move ax-11 only theorems

* discouraged

* add missing tag
  • Loading branch information
wlammen authored Jan 3, 2025
1 parent 4edddb3 commit 5afff8a
Show file tree
Hide file tree
Showing 2 changed files with 151 additions and 144 deletions.
2 changes: 2 additions & 0 deletions discouraged
Original file line number Diff line number Diff line change
Expand Up @@ -18731,6 +18731,7 @@ New usage of "rabrabiOLD" is discouraged (0 uses).
New usage of "ral0OLD" is discouraged (0 uses).
New usage of "ralabOLD" is discouraged (0 uses).
New usage of "ralbidaOLD" is discouraged (0 uses).
New usage of "ralcom13OLD" is discouraged (0 uses).
New usage of "ralcom2" is discouraged (0 uses).
New usage of "ralcom3OLD" is discouraged (0 uses).
New usage of "ralcom4OLD" is discouraged (0 uses).
Expand Down Expand Up @@ -21115,6 +21116,7 @@ Proof modification of "rabrabiOLD" is discouraged (38 steps).
Proof modification of "ral0OLD" is discouraged (12 steps).
Proof modification of "ralabOLD" is discouraged (40 steps).
Proof modification of "ralbidaOLD" is discouraged (43 steps).
Proof modification of "ralcom13OLD" is discouraged (58 steps).
Proof modification of "ralcom3OLD" is discouraged (38 steps).
Proof modification of "ralcom4OLD" is discouraged (63 steps).
Proof modification of "raleleqALT" is discouraged (26 steps).
Expand Down
293 changes: 149 additions & 144 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -30008,6 +30008,12 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
rsp2 $p |- ( A. x e. A A. y e. B ph -> ( ( x e. A /\ y e. B ) -> ph ) ) $=
( wral cv wcel wi rsp syl6 impd ) ACEFZBDFZBGDHZCGEHZANOMPAIMBDJACEJKL $.

$( Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof
shortened by Wolf Lammen, 7-Jan-2020.) $)
rsp2e $p |- ( ( x e. A /\ y e. B /\ ph ) -> E. x e. A E. y e. B ph ) $=
( cv wcel wrex wa rspe sylan2 3impb ) BFDGZCFEGZAACEHZBDHZNAIMOPACEJOBDJKL
$.

${
rspec2.1 $e |- A. x e. A A. y e. B ph $.
$( Specialization rule for restricted quantification, with two quantifiers.
Expand Down Expand Up @@ -30060,6 +30066,149 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
EITEOPATELGMBCQJRSS $.
$}

$( *** Theorems using axioms up to ax-8 and ax-10 only: *** $)

$( The setvar ` x ` is not free in ` A. x e. A ph ` . (Contributed by NM,
18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) $)
nfra1 $p |- F/ x A. x e. A ph $=
( wral cv wcel wi wal df-ral nfa1 nfxfr ) ABCDBECFAGZBHBABCILBJK $.

$( The setvar ` x ` is not free in ` E. x e. A ph ` . (Contributed by NM,
19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) $)
nfre1 $p |- F/ x E. x e. A ph $=
( wrex cv wcel wa wex df-rex nfe1 nfxfr ) ABCDBECFAGZBHBABCILBJK $.

$( *** Theorems using axioms up to ax-8 and ax-11 only: *** $)

${
$d x y $. $d y A $.
$( Commutation of restricted and unrestricted universal quantifiers.
(Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon,
8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.)
(Proof shortened by Wolf Lammen, 31-Oct-2024.) $)
ralcom4 $p |- ( A. x e. A A. y ph <-> A. y A. x e. A ph ) $=
( wal wral cv wcel wi 19.21v albii alcom df-ral 3bitr4ri bitr4i ) ACEZBDF
ZBGDHZAIZBEZCEZABDFZCESCEZBERPIZBEUAQUCUDBRACJKSCBLPBDMNUBTCABDMKO $.

$( Obsolete version of ~ ralcom4 as of 31-Oct-2024. (Contributed by NM,
26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce
axiom dependencies. (Revised by BJ, 13-Jun-2019.)
(New usage is discouraged.) (Proof modification is discouraged.) $)
ralcom4OLD $p |- ( A. x e. A A. y ph <-> A. y A. x e. A ph ) $=
( cv wcel wal wi wral 19.21v bicomi albii alcom bitri df-ral 3bitr4i ) BE
DFZACGZHZBGZQAHZBGZCGZRBDIABDIZCGTUACGZBGUCSUEBUESQACJKLUABCMNRBDOUDUBCAB
DOLP $.

$( Commutation of restricted and unrestricted existential quantifiers.
(Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon,
8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ,
13-Jun-2019.) $)
rexcom4 $p |- ( E. x e. A E. y ph <-> E. y E. x e. A ph ) $=
( cv wcel wa wex wrex exdistr df-rex exbii excom bitri 3bitr4ri ) BEDFZAG
ZCHBHZPACHZGBHABDIZCHZSBDIPABCJUAQBHZCHRTUBCABDKLQCBMNSBDKO $.

$d x B $.
$( Commutation of restricted universal quantifiers. See ~ ralcom2 for a
version without disjoint variable condition on ` x , y ` . This theorem
should be used in place of ~ ralcom2 since it depends on a smaller set
of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario
Carneiro, 14-Oct-2016.) $)
ralcom $p |- ( A. x e. A A. y e. B ph <-> A. y e. B A. x e. A ph ) $=
( cv wcel wa wi wal wral ancomst 2albii alcom bitri r2al 3bitr4i ) BFDGZC
FEGZHAIZCJBJZSRHAIZBJCJZACEKBDKABDKCEKUAUBCJBJUCTUBBCRSALMUBBCNOABCDEPACB
EDPQ $.
$( $j usage 'ralcom' avoids 'ax-6' 'ax-7' 'ax-8' 'ax-9' 'ax-10' 'ax-12'
'ax-13' 'ax-ext'; $)

$( Commutation of restricted existential quantifiers. (Contributed by NM,
19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof
shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen,
8-Dec-2024.) $)
rexcom $p |- ( E. x e. A E. y e. B ph <-> E. y e. B E. x e. A ph ) $=
( wrex wn wral ralcom ralnex2 3bitr3i con4bii ) ACEFBDFZABDFCEFZAGZCEHBDH
OBDHCEHMGNGOBCDEIABCDEJACBEDJKL $.
$( $j usage 'rexcom' avoids 'ax-6' 'ax-7' 'ax-8' 'ax-9' 'ax-10' 'ax-12'
'ax-13' 'ax-ext'; $)

$( Obsolete version of ~ rexcom as of 8-Dec-2024. (Contributed by NM,
19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof
shortened by BJ, 26-Aug-2023.) (New usage is discouraged.)
(Proof modification is discouraged.) $)
rexcomOLD $p |- ( E. x e. A E. y e. B ph <-> E. y e. B E. x e. A ph ) $=
( wrex cv wcel wa wex df-rex rexbii rexcom4 r19.42v exbii bitr4i 3bitri )
ACEFZBDFCGEHZAIZCJZBDFTBDFZCJZABDFZCEFZRUABDACEKLTBCDMUCSUDIZCJUEUBUFCSAB
DNOUDCEKPQ $.
$( $j usage 'rexcomOLD' avoids 'ax-6' 'ax-7' 'ax-8' 'ax-9' 'ax-10' 'ax-12'
'ax-13' 'ax-ext'; $)
$}

${
$d x A $. $d x y $. $d x ph $.
$( Specialized existential commutation lemma. (Contributed by Jeff Madsen,
1-Jun-2011.) $)
rexcom4a $p |- ( E. x E. y e. A ( ph /\ ps ) <->
E. y e. A ( ph /\ E. x ps ) ) $=
( wa wrex wex rexcom4 19.42v rexbii bitr3i ) ABFZDEGCHMCHZDEGABCHFZDEGMDC
EINODEABCJKL $.
$}

${
$d z A $. $d z B $. $d x C $. $d y C $. $d x z $. $d y z $.
$( Rotate three restricted universal quantifiers. (Contributed by AV,
3-Dec-2021.) $)
ralrot3 $p |- ( A. x e. A A. y e. B A. z e. C ph
<-> A. z e. C A. x e. A A. y e. B ph ) $=
( wral ralcom ralbii bitri ) ADGHCFHZBEHACFHZDGHZBEHMBEHDGHLNBEACDFGIJMBD
EGIK $.
$}

${
$d y z A $. $d x z B $. $d x y C $.
$( Swap first and third restricted universal quantifiers. (Contributed by
AV, 3-Dec-2021.) (Proof shortened by Wolf Lammen, 2-Jan-2025.) $)
ralcom13 $p |- ( A. x e. A A. y e. B A. z e. C ph
<-> A. z e. C A. y e. B A. x e. A ph ) $=
( wral ralrot3 ralcom ralbii bitri ) ADGHCFHBEHACFHBEHZDGHABEHCFHZDGHABCD
EFGIMNDGABCEFJKL $.

$( Obsolete version of ~ ralcom13 as of 2-Jan-2025. (Contributed by AV,
3-Dec-2021.) (Proof modification is discouraged.)
(New usage is discouraged.) $)
ralcom13OLD $p |- ( A. x e. A A. y e. B A. z e. C ph
<-> A. z e. C A. y e. B A. x e. A ph ) $=
( wral ralcom ralbii 3bitri ) ADGHZCFHBEHLBEHZCFHABEHZDGHZCFHNCFHDGHLBCEF
IMOCFABDEGIJNCDFGIK $.

$( Swap first and third restricted existential quantifiers. (Contributed
by NM, 8-Apr-2015.) $)
rexcom13 $p |- ( E. x e. A E. y e. B E. z e. C ph
<-> E. z e. C E. y e. B E. x e. A ph ) $=
( wrex rexcom rexbii 3bitri ) ADGHZCFHBEHLBEHZCFHABEHZDGHZCFHNCFHDGHLBCEF
IMOCFABDEGIJNCDFGIK $.
$}

${
$d w z A $. $d w z B $. $d w x C $. $d w y C $. $d x z D $.
$d y z D $.
$( Rotate four restricted existential quantifiers twice. (Contributed by
NM, 8-Apr-2015.) $)
rexrot4 $p |- ( E. x e. A E. y e. B E. z e. C E. w e. D ph
<-> E. z e. C E. w e. D E. x e. A E. y e. B ph ) $=
( wrex rexcom13 rexbii bitri ) AEIJDHJCGJZBFJACGJZDHJEIJZBFJOBFJEIJDHJNPB
FACDEGHIKLOBEDFIHKM $.
$}

${
$d A x $. $d A y $. $d B x $. $d B y $. $d w x $. $d w y $. $d x z $.
$d y z $.
$( Rotate two existential quantifiers and two restricted existential
quantifiers. (Contributed by AV, 9-Nov-2023.) $)
2ex2rexrot $p |- ( E. x E. y E. z e. A E. w e. B ph
<-> E. z e. A E. w e. B E. x E. y ph ) $=
( wex wrex rexcom4 rexbii bitri exbii 3bitrri ) ACHZBHEGIZDFIOEGIZBHZDFIQ
DFIZBHAEGIZDFICHZBHPRDFOEBGJKQDBFJSUABSTCHZDFIUAQUBDFAECGJKTDCFJLMN $.
$}

$( Extend wff notation to include restricted existential uniqueness. $)
wreu $a wff E! x e. A ph $.

Expand Down Expand Up @@ -30108,11 +30257,6 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
~ df-ral . (Contributed by NM, 22-Nov-1994.) $)
df-rab $a |- { x e. A | ph } = { x | ( x e. A /\ ph ) } $.

$( The setvar ` x ` is not free in ` A. x e. A ph ` . (Contributed by NM,
18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) $)
nfra1 $p |- F/ x A. x e. A ph $=
( wral cv wcel wi wal df-ral nfa1 nfxfr ) ABCDBECFAGZBHBABCILBJK $.

$( The setvar ` x ` is not free in ` A. x e. A ph ` . (Contributed by NM,
18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.) $)
hbra1 $p |- ( A. x e. A ph -> A. x A. x e. A ph ) $=
Expand Down Expand Up @@ -30267,93 +30411,6 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
( cv wcel eleq2i imbi12i ralbii2 ) ABCDECHZDIMEIABDEMFJGKL $.
$}

${
$d x y $. $d y A $.
$( Commutation of restricted and unrestricted universal quantifiers.
(Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon,
8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.)
(Proof shortened by Wolf Lammen, 31-Oct-2024.) $)
ralcom4 $p |- ( A. x e. A A. y ph <-> A. y A. x e. A ph ) $=
( wal wral cv wcel wi 19.21v albii alcom df-ral 3bitr4ri bitr4i ) ACEZBDF
ZBGDHZAIZBEZCEZABDFZCESCEZBERPIZBEUAQUCUDBRACJKSCBLPBDMNUBTCABDMKO $.

$( Obsolete version of ~ ralcom4 as of 31-Oct-2024. (Contributed by NM,
26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce
axiom dependencies. (Revised by BJ, 13-Jun-2019.)
(New usage is discouraged.) (Proof modification is discouraged.) $)
ralcom4OLD $p |- ( A. x e. A A. y ph <-> A. y A. x e. A ph ) $=
( cv wcel wal wi wral 19.21v bicomi albii alcom bitri df-ral 3bitr4i ) BE
DFZACGZHZBGZQAHZBGZCGZRBDIABDIZCGTUACGZBGUCSUEBUESQACJKLUABCMNRBDOUDUBCAB
DOLP $.

$d x B $.
$( Commutation of restricted universal quantifiers. See ~ ralcom2 for a
version without disjoint variable condition on ` x , y ` . This theorem
should be used in place of ~ ralcom2 since it depends on a smaller set
of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario
Carneiro, 14-Oct-2016.) $)
ralcom $p |- ( A. x e. A A. y e. B ph <-> A. y e. B A. x e. A ph ) $=
( cv wcel wa wi wal wral ancomst 2albii alcom bitri r2al 3bitr4i ) BFDGZC
FEGZHAIZCJBJZSRHAIZBJCJZACEKBDKABDKCEKUAUBCJBJUCTUBBCRSALMUBBCNOABCDEPACB
EDPQ $.
$( $j usage 'ralcom' avoids 'ax-6' 'ax-7' 'ax-8' 'ax-9' 'ax-10' 'ax-12'
'ax-13' 'ax-ext'; $)
$}

${
$d x y $. $d y A $.
$( Commutation of restricted and unrestricted existential quantifiers.
(Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon,
8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ,
13-Jun-2019.) $)
rexcom4 $p |- ( E. x e. A E. y ph <-> E. y E. x e. A ph ) $=
( cv wcel wa wex wrex exdistr df-rex exbii excom bitri 3bitr4ri ) BEDFZAG
ZCHBHZPACHZGBHABDIZCHZSBDIPABCJUAQBHZCHRTUBCABDKLQCBMNSBDKO $.

$d x B $.
$( Commutation of restricted existential quantifiers. (Contributed by NM,
19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof
shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen,
8-Dec-2024.) $)
rexcom $p |- ( E. x e. A E. y e. B ph <-> E. y e. B E. x e. A ph ) $=
( wrex wn wral ralcom ralnex2 3bitr3i con4bii ) ACEFBDFZABDFCEFZAGZCEHBDH
OBDHCEHMGNGOBCDEIABCDEJACBEDJKL $.
$( $j usage 'rexcom' avoids 'ax-6' 'ax-7' 'ax-8' 'ax-9' 'ax-10' 'ax-12'
'ax-13' 'ax-ext'; $)
$}

${
$d A x $. $d A y $. $d B x $. $d B y $. $d w x $. $d w y $. $d x z $.
$d y z $.
$( Rotate two existential quantifiers and two restricted existential
quantifiers. (Contributed by AV, 9-Nov-2023.) $)
2ex2rexrot $p |- ( E. x E. y E. z e. A E. w e. B ph
<-> E. z e. A E. w e. B E. x E. y ph ) $=
( wex wrex rexcom4 rexbii bitri exbii 3bitrri ) ACHZBHEGIZDFIOEGIZBHZDFIQ
DFIZBHAEGIZDFICHZBHPRDFOEBGJKQDBFJSUABSTCHZDFIUAQUBDFAECGJKTDCFJLMN $.
$}

${
$d x A $. $d x y $. $d x ph $.
$( Specialized existential commutation lemma. (Contributed by Jeff Madsen,
1-Jun-2011.) $)
rexcom4a $p |- ( E. x E. y e. A ( ph /\ ps ) <->
E. y e. A ( ph /\ E. x ps ) ) $=
( wa wrex wex rexcom4 19.42v rexbii bitr3i ) ABFZDEGCHMCHZDEGABCHFZDEGMDC
EINODEABCJKL $.
$}

$( Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof
shortened by Wolf Lammen, 7-Jan-2020.) $)
rsp2e $p |- ( ( x e. A /\ y e. B /\ ph ) -> E. x e. A E. y e. B ph ) $=
( cv wcel wrex wa rspe sylan2 3impb ) BFDGZCFEGZAACEHZBDHZNAIMOPACEJOBDJKL
$.

$( The setvar ` x ` is not free in ` E. x e. A ph ` . (Contributed by NM,
19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) $)
nfre1 $p |- F/ x E. x e. A ph $=
( wrex cv wcel wa wex df-rex nfe1 nfxfr ) ABCDBECFAGZBHBABCILBJK $.

${
$d x y $.
nfrexd.1 $e |- F/ y ph $.
Expand Down Expand Up @@ -30464,58 +30521,6 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
BCPQABCDEFRACBEDGRS $.
$}

${
$d x y $. $d y A $. $d x B $.
$( Obsolete version of ~ rexcom as of 8-Dec-2024. (Contributed by NM,
19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof
shortened by BJ, 26-Aug-2023.) (New usage is discouraged.)
(Proof modification is discouraged.) $)
rexcomOLD $p |- ( E. x e. A E. y e. B ph <-> E. y e. B E. x e. A ph ) $=
( wrex cv wcel wa wex df-rex rexbii rexcom4 r19.42v exbii bitr4i 3bitri )
ACEFZBDFCGEHZAIZCJZBDFTBDFZCJZABDFZCEFZRUABDACEKLTBCDMUCSUDIZCJUEUBUFCSAB
DNOUDCEKPQ $.
$( $j usage 'rexcomOLD' avoids 'ax-6' 'ax-7' 'ax-8' 'ax-9' 'ax-10' 'ax-12'
'ax-13' 'ax-ext'; $)
$}

${
$d y z A $. $d x z B $. $d x y C $.
$( Swap first and third restricted universal quantifiers. (Contributed by
AV, 3-Dec-2021.) $)
ralcom13 $p |- ( A. x e. A A. y e. B A. z e. C ph
<-> A. z e. C A. y e. B A. x e. A ph ) $=
( wral ralcom ralbii 3bitri ) ADGHZCFHBEHLBEHZCFHABEHZDGHZCFHNCFHDGHLBCEF
IMOCFABDEGIJNCDFGIK $.

$( Swap first and third restricted existential quantifiers. (Contributed
by NM, 8-Apr-2015.) $)
rexcom13 $p |- ( E. x e. A E. y e. B E. z e. C ph
<-> E. z e. C E. y e. B E. x e. A ph ) $=
( wrex rexcom rexbii 3bitri ) ADGHZCFHBEHLBEHZCFHABEHZDGHZCFHNCFHDGHLBCEF
IMOCFABDEGIJNCDFGIK $.
$}

${
$d z A $. $d z B $. $d x C $. $d y C $. $d x z $. $d y z $.
$( Rotate three restricted universal quantifiers. (Contributed by AV,
3-Dec-2021.) $)
ralrot3 $p |- ( A. x e. A A. y e. B A. z e. C ph
<-> A. z e. C A. x e. A A. y e. B ph ) $=
( wral ralcom ralbii bitri ) ADGHCFHZBEHACFHZDGHZBEHMBEHDGHLNBEACDFGIJMBD
EGIK $.
$}

${
$d w z A $. $d w z B $. $d w x C $. $d w y C $. $d x z D $.
$d y z D $.
$( Rotate four restricted existential quantifiers twice. (Contributed by
NM, 8-Apr-2015.) $)
rexrot4 $p |- ( E. x e. A E. y e. B E. z e. C E. w e. D ph
<-> E. z e. C E. w e. D E. x e. A E. y e. B ph ) $=
( wrex rexcom13 rexbii bitri ) AEIJDHJCGJZBFJACGJZDHJEIJZBFJOBFJEIJDHJNPB
FACDEGHIKLOBEDFIHKM $.
$}

${
$d y A $. $d x A $.
$( Commutation of restricted universal quantifiers. Note that ` x ` and
Expand Down

0 comments on commit 5afff8a

Please sign in to comment.